Abstract:
In a control board and a display apparatus, the control board includes a timing controller, and first and second connectors. The timing controller receives a first external image control signal having one of a first and a second frequency, and selectively receives a second external image control signal having the first frequency when the first external image control signal has the first frequency. The timing controller selects one of the first and second frequencies based on the first and second external image control signals to output an image driving signal. The first connector connects the timing controller to an external video system to transfer the first external image control signal to the timing controller. The second connector connects the timing controller to the external video system to transfer the second external image control signal to the timing controller. Thus, the control board is commonly used in the first and second frequencies.
Abstract:
A display panel has a high pixel and a low pixel that are formed in a pixel area. A driving section receives a first image signal from an external device, outputs a second image signal to the high pixel using gamma data that corresponds to a high pixel gamma curve, and outputs a third image signal to the low pixel using gamma data that corresponds to a Sow pixel gamma curve. A driving section outputs the third image signal to the low pixel using the same gamma data for RGB data that correspond to a low gradation of the low pixel gamma curve.
Abstract:
A method of displaying a stereoscopic image comprises; dividing an input image into a left-eye image and a right-eye image, estimating a crosstalk in accordance with a position of a display panel using a grayscale difference between the left-eye image and the right-eye image, displaying the left-eye image and the right-eye image and adjusting opening periods and closing periods of a pair of shutter glasses so that a shutter of the pair of shutter glasses is open and closed respectively during the opening period and the closing period based on the estimated crosstalk.
Abstract:
A display apparatus includes a plurality of pixels. Each pixel includes a main pixel, a sub-pixel, and a boosting capacitor. The main pixel receives a data signal in response to a first gate signal and is charged with a main pixel voltage. The sub-pixel receives the data signal in response to a second gate signal, and is charged with a sub-pixel voltage. The boosting capacitor is provided between the main pixel and the sub-pixel to increase the main pixel voltage when the sub-pixel is charged with the sub-pixel voltage in response to the second gate signal.
Abstract:
A display device includes: first and second pixels:, first and second gate lines which transfer first and second gate-on voltages, respectively, to both the first and second pixels in a first frame and a second frame, respectively; and a data line which transfers a first data voltage to both the first and second pixels in the first and second frames and transfers a second data voltage to both the first and second pixels in the second frame. The first pixel stores the first data voltage as a first stored data voltage in response to the first gate-on voltage and discharges the first stored data voltage in response to the second gate-on voltage. The second pixel stores the second data voltage as a second stored data voltage in response to the second gate-on voltage and discharges the second stored data voltage in response to the first gate-on voltage.
Abstract:
A liquid crystal display includes a liquid crystal panel assembly with a plurality of pixels, a printed circuit board disposed under the liquid crystal panel assembly, and a plurality of laser diodes disposed on the printed circuit board. The laser diodes are disposed to correspond to substantially respective pixels of the liquid crystal panel assembly. In another embodiment, the liquid crystal display includes a light-guiding layer formed on the laser diodes.
Abstract:
A liquid crystal display includes a plurality of gate lines and a plurality of data lines crossing over the gate lines while being electrically insulated from the gate lines. Pixels are placed at the cross regions of the gate and the data lines arranged in a matrix form. Each pixel has a switching circuit connected to the gate and the data lines. Data voltages are fed to the pixels such that the polarity of the pixels is inverted per a pixel group of two or more pixel rows. Gate voltages are applied to the neighboring first and second pixel groups such that the gate voltage applied to the pixel row of the first pixel group close to the second pixel group differs from the gate voltage applied to the pixel row of the first pixel group distant to the second pixel group.
Abstract:
A gamma voltage generator for a liquid crystal display (LCD) capable of removing residual images by compensating a gamma voltage is presented. The gamma voltage generation apparatus adjusts the common voltage by the kickback voltage for the intermediate gray level, and tunes the gamma voltages other than the intermediate gray level gamma voltage. The adjustment of the gamma voltages other than the intermediate gray level gamma voltage is achieved in such a manner that the difference between the intermediate gray level kickback voltage and the kickback voltage at one of the gray levels other than the intermediate gray level is equal to half of the difference between the sum of the two inverted gamma voltages representing the intermediate gray level gamma voltages and the sum of the two inverted gamma voltages corresponding to the selected gray level.
Abstract:
A gamma voltage generator of a liquid crystal display (LCD) capable of removing residual images by compensating a gamma voltage. The gamma voltage generation apparatus adjusts the common voltage by the kickback voltage for the intermediate gray level, and tunes the gamma voltages other than the intermediate gray level gamma voltage. The adjustment of the gamma voltages other than the intermediate gray level gamma voltage is achieved in such a manner that the difference between the intermediate gray level kickback voltage and the kickback voltage at one of the gray levels other than the intermediate gray level is equal to half of the difference between the sum of the two inverted gamma voltages representing the intermediate gray level gamma voltages and the sum of the two inverted gamma voltages corresponding to the selected gray level.
Abstract:
A liquid crystal display (LCD) including a liquid crystal panel, and a gate driver which applies a gate signal having a driving frequency equal to or greater than 100 Hz to the liquid crystal panel. The liquid crystal panel comprises a first display panel, a second display panel facing the first display panel, and a liquid crystal composition disposed between the first display panel and the second display panel and includes liquid crystals.