Abstract:
A method for manufacturing a porous carbon material doped with a heterogeneous element and a porous carbon material doped with a heterogeneous element manufactured using the method are proposed. The method includes melting carbon precursor powder that contains one or more kinds of heterogeneous elements selected from metal and nonmetal to prepare a precursor melt; disposing a pair of metal wires in the precursor melt; and applying power to the metal wires to perform plasma-discharge, thus forming and aggregating carbon nanoparticles doped with the heterogeneous element while having a micropore and thereby forming a porous carbon material having a meso-macro hierarchical pore structure. As the heterogeneous element is bound to carbon of the carbon precursor, the carbon nanoparticles are formed in an amorphous structure while being doped with the heterogeneous element, thus increasing an active site.
Abstract:
A method for manufacturing a porous carbon material doped with a heterogeneous element and a porous carbon material doped with a heterogeneous element manufactured using the method are proposed. The method includes melting carbon precursor powder that contains one or more kinds of heterogeneous elements selected from metal and nonmetal to prepare a precursor melt; disposing a pair of metal wires in the precursor melt; and applying power to the metal wires to perform plasma-discharge, thus forming and aggregating carbon nanoparticles doped with the heterogeneous element while having a micropore and thereby forming a porous carbon material having a meso-macro hierarchical pore structure. As the heterogeneous element is bound to carbon of the carbon precursor, the carbon nanoparticles are formed in an amorphous structure while being doped with the heterogeneous element, thus increasing an active site.
Abstract:
Disclosed is an apparatus for decreasing a thrust of a radial flow turbine. The apparatus includes a rotary shaft having an axial through-hole in the interior thereof, a rotor assembled in the rotary shaft and having a rotor hub and rotor blades formed on an outer peripheral surface thereof, a casing configured to isolate the rotary shaft and the rotor from the outside, and a shaft seal configured to maintain a seal between the rotary shaft and the casing.
Abstract:
The biological treatment method for refractory wastewater of the present invention includes: a step of producing a complex microbial liquid by maintaining, at between 15 and 28° C., a complex microbial liquid obtained by mixing between 0.01 and 1 percent by weight of mixed microorganisms BM-S-1 (Repository Deposit No. KCTC 11789BP), between 0.1 and 1 percent by weight of powdered chaff, between 0.1 and 1 percent by weight of powdered peat moss, between 1 and 5 percent by weight of molasses, between 0.01 and 1 percent by weight of shiitake mushroom waste wood dust and between 92 and 98 percent by weight of water; a mixed stock production step; a high-temperature inoculation step; a culturing step; a drying step; a microbial starting broth production step; and a microbe activation step.
Abstract:
A load area tracking type ship battery management system is proposed. The ship battery management system includes a calculation unit for generating SFOC curve data periodically by calculating specific fuel oil consumption (SFOC) versus ship load factors, a LF setting unit for specifying a ship load factor point as a light load factor (LF) point in the SFOC curve data, a HF setting unit for specifying a ship load factor point as a heavy load factor (HF) point, a Emax setting unit configured to obtain a highest point (Emax) of generator efficiency, a Rmin setting unit for calculating battery charging efficiency in the LF to obtain a smallest load factor point (Rmin) bearing a generator load by battery charging, and a Rmax setting unit for calculating battery charging efficiency in the HF to obtain a highest load factor point (Rmax) bearing the generator load by battery discharging.
Abstract:
There is provided a solar power generator having a variable shape which can secure a maximum solar power generation area by being unfolded horizontally and upward in the case of performing solar power generation and can be transformed to have a minimum volume by being transformed into a box shape in the case of not performing solar power generation. The solar power generator includes a base frame, four solar panel members for forming a box which are respectively coupled to four sides of the base frame, a rotation drive source for rotating each of the four solar panel members, a tube member, a lower surface of which is fixed to a center portion of an upper surface of the base frame, an air injection and discharge part, a top plate for the tube member, and a plurality of solar panel assemblies for tube member sidewalls.
Abstract:
There is provided a method for producing calcium carbonate by utilizing seawater and calcinated shells, and calcium carbonate and a calcium agent produced thereby. The method for producing calcium carbonate includes: eluting calcium by mixing calcinated shells, seawater, and sugar; and generating calcium carbonate by injecting carbon dioxide into the calcium eluate generated in the eluting calcium. The calcium agent includes vaterite-type calcium carbonate.
Abstract:
Disclosed herein are an apparatus and method for decoding a bootstrap signal. The apparatus for decoding a bootstrap signal according to an embodiment of the present invention includes an operation unit for calculating the relative cyclic shift and the channel gain estimate of a received bootstrap signal and correcting the channel gain estimate using the relative cyclic shift, and a decoding unit for decoding the bootstrap signal using the corrected channel gain estimate.
Abstract:
Disclosed herein are an apparatus and method for decoding a bootstrap signal. The apparatus for decoding a bootstrap signal according to an embodiment of the present invention includes an operation unit for calculating the relative cyclic shift and the channel gain estimate of a received bootstrap signal and correcting the channel gain estimate using the relative cyclic shift, and a decoding unit for decoding the bootstrap signal using the corrected channel gain estimate.
Abstract:
A buoy system according to one embodiment of the present invention includes a buoy body configured to provide buoyance; a fixing belt configured to fasten the buoy body to a ship structure; an auto-release unit configured to release the buoy body to be buoyed by releasing the fixing belt when a predetermined water pressure is reached; and an auto-reel chain box fixed to the ship structure, being opened in conjunction with releasing of the fixing belt, and including a chain which is reeled out when the buoy body is buoyed, wherein the auto-reel chain box comprises: a weight provided in the auto-reel chain box and being movable upward and downward according to a water pressure and buoyance; a pulley provided in the auto-reel chain box, having the chain wounded thereon and a plurality of teeth on an outer circumferential surface thereof; and a shaft having one end connected to the weight and the other end engaging with the teeth to fix the pulley and provided to be rotatable around a portion fixed in the auto-reel chain box.