Abstract:
Embodiments of a system and method for wireless communication are provided. In certain embodiments, an identification number is received from a subscriber station. The identification number is used to retrieve information regarding features supported by the subscriber station from a first database. An indication of features to be enabled for communication with the subscriber station can be provided based on the features supported by the subscriber station.
Abstract:
Briefly, in accordance with one or more embodiments, a conventional physical downlink control channel (PDCCH) is transmitted in a first region of a physical downlink control channel structure utilized by a remote radio head that has been assigned a cell identifier that is common to one or more other remote radio heads within the cell, and an enhanced physical downlink control channel (ePDCCH) is transmitted in a second region of the physical downlink control channel structure.
Abstract:
Embodiments of a system and method for wireless communication are provided. In certain embodiments, an identification number is received from a subscriber station. The identification number is used to retrieve information regarding features supported by the subscriber station from a first database. An indication of features to be enabled for communication with the subscriber station can be provided based on the features supported by the subscriber station.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
Technology for partitioning small cell physical-layer cell identities (PCI) at a node in a heterogeneous network (HetNet) is disclosed. One method can include the node identifying at least one small cell PCI of a plurality of small cells in a macro cell. Each small cell PCI can be associated with a low power node (LPN) in the HetNet. The node can generate a small cell PCI list to include the at least one small cell PCI. The node can broadcast the small cell PCI list to a wireless device.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for management and/or support of multimedia broadcast multicast service (MBMS) service in a wireless communications network. An evolved Node B (eNB) may transmit MBMS assistance information to a user equipment (UE). The MBMS assistance information may identify a carrier by which one or more upcoming MBMS services are to be provided and an indicator of a carrier selection mode to be used by the UE. The UE may transmit an MBMS interest indication message including information related to one or more targeted MBMS services which the UE wants to receive.
Abstract:
Systems and methods for Multi-Radio Access Technology (RAT) Carrier Aggregation (MRCA) wireless wide area network (WWAN) assisted wireless local area network (WLAN) flow mapping and flow routing are disclosed. One system comprises a dynamic flow mapping module that is configured to form a flow-mapping table to dynamically map service flows between the WWAN radio and the WLAN radio in the wireless device. A flow routing module is configured to route data packets to one of the WWAN radio and the WLAN radio in the wireless device based on the flow-mapping table to transmit and receive the data packets via the wireless device.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
Embodiments of a system and methods for advanced multi-cell coordinated operations are generally described herein. Other embodiments may be described and claimed.
Abstract:
Briefly, in accordance with one or more embodiments, user equipment receives unicast services from a first carrier of a primary serving cell and determines if Multimedia Broadcast and Multicast services (MBMS) services are available on a second carrier based at least in part on information in a broadcast carrier channel that indicates the second carrier or an identification (ID) of the second carrier. If MBMS services are available on the second carrier, the user equipment at least temporarily switches to the second carrier to receive the MBMS services. The user equipment may provide feedback to the network or the primary serving cell when it starts and stops receiving MBMS services, and then may switch back to the primary serving cell when MBMS services have ended or the user equipment no longer desires to receive MBMS services.