Abstract:
A positive electrode active material of a nonaqueous electrolyte secondary battery is composed of lithium-cobalt composite oxide containing at least one of zirconium, titanium, aluminum, and erbium, and the nonaqueous electrolyte includes an additive expressed by General Formula (1) having an acetylene group and a methylsulfonyl group at each end of the molecule. It has the effect of forming an SEI surface film as with the case of VC or the like, as well as having a higher oxidation resistance than that of VC or the like. Thus the nonaqueous electrolyte secondary battery employing as positive electrode active material a lithium-cobalt composite oxide with a particular dissimilar metallic element added, in which decomposition of the nonaqueous electrolytic solution during storage at high temperature in a charged state is suppressed, and there is little battery swelling is provided.
Abstract:
The present invention provides a lithium secondary battery having excellent battery characteristics such as battery cycling property, electrical capacity and storage property.The present invention relates to a nonaqueous electrolytic solution for lithium secondary batteries in which an electrolyte salt is dissolved in a nonaqueous solvent, the nonaqueous electrolytic solution comprising a formic ester compound having a specific structure in an amount of 0.01 to 10% by weight of the nonaqueous electrolytic solution, and a lithium secondary battery using the same.
Abstract:
The sudden generation of heat being frequently caused in the case of the overcharge of a lithium secondary cell which have a positive electrode comprising a composite metal oxide of lithium and cobalt or a composite metal oxide of lithium and nickel, a negative electrode comprising metallic lithium, a lithium alloy or a material capable of occluding and releasing lithium, and a nonaqueous electrolyte solution comprising a nonaqueous solvent and an electrolyte dissolved therein can be efficiently prevented by the addition, to the nonaqueous electrolyte solution, of an organic compound which, when the lithium secondary cell is overcharged, decomposes into a decomposition product capable of dissolving out the cobalt or nickel contained in the positive electrode and depositing it ion the negative electrode (for example, a tert-alkylbenzene derivative).
Abstract:
A nonaqueous electrolytic solution for a lithium secondary battery, in which 0.01 to 10 wt. % of a sulfur-containing acid ester and 0.01 to 10 wt. % of a triple bond-containing compound are dissolved in a nonaqueous solvent, and a lithium secondary battery employing the nonaqueous electrolytic solution.
Abstract:
The present invention provides a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, containing 0.01% to 30% by weight of a 1,2-cyclohexanediol derivative having a specific structure; and a lithium secondary battery using the nonaqueous electrolytic solution. The lithium secondary battery exhibits excellent battery characteristics such as electrical capacity, cycle property, and storage property and can maintain excellent long-term battery performance.
Abstract:
The sudden generation of heat being frequently caused in the case of the overcharge of a lithium secondary cell which have a positive electrode comprising a composite metal oxide of lithium and cobalt or a composite metal oxide of lithium and nickel, a negative electrode comprising metallic lithium, a lithium alloy or a material capable of occluding and releasing lithium, and a nonaqueous electrolyte solution comprising a nonaqueous solvent and an electrolyte dissolved therein can be efficiently prevented by the addition, to the nonaqueous electrolyte solution, of an organic compound which, when the lithium secondary cell is overcharged, decomposes into a decomposition product capable of dissolving out the cobalt or nickel contained in the positive electrode and depositing it ion the negative electrode (for example, a tert-alkylbenzene derivative).
Abstract:
A nonaqueous electrolyte secondary battery comprising a negative electrode constituted of a carbonaceous material permitting reversible insertion and desorption of lithium, a positive electrode permitting reversible insertion and desorption of lithium, a separator separating these positive electrode and negative electrode from each other and a nonaqueous electrolyte composed of an organic solvent and, dissolved therein, a solute of lithium salt, wherein the nonaqueous electrolyte contains vinylene carbonate and di(2-propynyl) oxalate, these vinylene carbonate and di(2-propynyl) oxalate added in an amount of 0.1 to 3.0% by mass and 0.1 to 2.0% by mass, respectively, based on the mass of the nonaqueous electrolyte. Thus, there can be provided a nonaqueous electrolyte secondary battery wherein a stable SEI surface coating is formed to thereby exhibit a large initial capacity and excel in cycle characteristics at high temperature and wherein any cell swelling is slight.
Abstract:
The present invention is to provide a nonaqueous electrolytic solution prepared by dissolving an electrolyte salt in a nonaqueous solvent, wherein the nonaqueous solvent includes 0.01 to 40% by volume of an ester having two alkyl groups at the α-position carbon of the carbonyl group and being represented by the following general formula (I), and an energy storage device. (in the above formula, R1 is an alkyl group, an alkenyl group or an alkynyl group in which at least one of the hydrogen atoms may be substituted with a halogen atom, R2 and R3 are an alkyl group in which at least one of the hydrogen atoms may be substituted with a halogen atom, and R2 and R3 may be linked to each other to form a ring. However, when R2 and R3 do not form a ring, R3 is an alkyl group in which at least one of the hydrogen atoms may be substituted with a halogen atom.).
Abstract:
A nonaqueous electrolytic solution for lithium battery comprises an electrolyte salt dissolved in a nonaqueous solvent and contains a carboxylate compound represented by the following general formula (I) in an amount of from 0.01 to 10% by mass of the nonaqueous electrolytic solution. (In the formula R1 and R2 each independently represent a hydrogen atom, or an alkyl group having from 1 to 6 carbon atoms; R3 represents a hydrogen atom, a methyl group, or a group —CH2CO2CR1R2C≡CH (R1 and R2 have the same meaning as above).) A lithium battery uses the nonaqueous electrolytic solution having excellent cycle property and storage property.
Abstract translation:用于锂电池的非水电解液包含溶解在非水溶剂中的电解质盐,并且含有由以下通式(I)表示的羧酸盐化合物,其量为非水电解液的0.01至10质量%。 (式中,R 1和R 2各自独立地表示氢原子或碳原子数1〜6的烷基,R 3表示氢原子,甲基或-CH 2 CO 2 CR 1 R 2 C = CH(R 1和R 2相同 如上所述)。锂电池使用具有优异的循环性能和储存性能的非水电解液。