Abstract:
An apparatus and method for transporting substrate media including a nip assembly having a drive wheel operably connected to a drive mechanism for rotating the drive wheel, and an idler member disposed adjacent the drive wheel. The idler wheel and drive wheel forming a nip. The drive wheel and idler wheel are displaceable from each other to form a nip gap therebetween. A nip force generator is operably connected to the nip assembly. The nip force generator develops a first nip force upon entry of the substrate media into the nip and formation of the nip gap and develops a second nip force subsequent to the first nip force. The second nip force is greater than the first nip force.
Abstract:
According to aspects illustrated herein, there is provided a method, a system, and a printmaking device for calibrating sensors. The method begins by transporting a media sheet along a media path, the sheet having a lead edge, a trail edge and a measurement edge. Next, the method halts the forward motion of the sheet after the lead edge of the sheet passes a fixed reference. After that, the method moves the sheet laterally relative to the media path across the at least one edge sensor using a sheet actuator. Then, the method records an actual position of the sheet actuator and an output of at least one edge sensor. Finally, the method calculates a calibration factor based on the actual position of the sheet actuator and the output of the at least one edge sensor.
Abstract:
A method and system feeds sheets through a media path in a process direction and moves a laterally movable sheet registration carriage (positioned within the media path) in a lateral direction perpendicular to the process direction. It determines the lateral error of the sheets within the media path before the sheets enter the sheet registration carriage, using first sensors positioned within the media path. This allows the sheet registration carriage to be moved to a variable lateral starting position (as opposed to a consistent reset position or centered reset position) before the sheets enter the sheet registration carriage based on the error of the sheets as determined by the first sensors. The error can be the amount of lateral error, or simply can be a classification of lateral error (right error, left error, etc.).
Abstract:
Embodiments according to the present disclosure provide methods and systems of determining nip velocity profiles in a medium registration system, including parameterizing a set of equations into a set of standard parameters, the set of equations representing an analytic form of the nip velocity profiles; determining values of the parameters through an iteration process; and determining the nip velocity profiles based on the determined values of the parameters. The embodiments separately provide systems and methods of simulating a medium registration process, including inputting an error parameter to a velocity nominal profile of a nip in a medium registration system; determining an output value of the velocity nominal profile; and using the output value in a regression algorithm to obtain a simulated relationship, the simulated relationship indicative of a manner in which the error parameter influences the output value. The embodiments separately provide systems and methods of determining an angular velocity of a medium relative to a nip in a medium registration system, including determining a path of the nip on the medium; and determining the angular velocity as a function of a position of the nip in the path. The embodiments separately provide systems and methods of controlling nips of a medium registration system, including wagging a medium relative to a center line of two nips of the medium registration system; and then unwagging the medium relative to the center line of the two nips.
Abstract:
A method of calibrating once-around and harmonic errors of encoded nips is provided. An encoder with an index pulse is used to measure the velocity and rotation of the driven wheel or idler. The geometry of the drive train and wheel and idler is chosen so that their once around and harmonic frequencies are unique such that no other drive errors will generate these frequencies. The method includes running the idler or wheel at substantially constant velocity for N revolutions. Each index triggers the collection of velocity data, which is averaged for N revolutions. This process detects drive train motion errors that are periodic with respect to the timing of the index pulse (i.e., once per revolution of the wheel or idler). Once the velocity errors have been measured, corrections are made. This method may be incorporated in xerographic machines as part of a setup or calibration procedure.
Abstract:
An electrostatographic and/or xerographic machine includes a media path adapted to move a media sheet. Sensors are positioned adjacent the media path. The media sheet has a leading edge and a trailing edge and the sensors are adapted to identify locations of the leading edge and the trailing edge of the media sheet. A marking device is positioned adjacent the media path. The marking device is adapted to print first items on a first side of the media sheet and print second items on a second side of the media sheet. A registration controller is operatively connected to the media path and to the sensors. The registration controller determines a length between the leading edge and the trailing edge of the media sheet using output from the sensors, and determines the parallelism between the leading edge and the trailing edge of the media sheet using output from the sensors. The registration controller calculates a registration correction factor based upon the length and the parallelism and corrects the alignment of the first items printed on the first side of the media sheet with the second items printed on the second side of the media sheet using the registration correction factor.
Abstract:
A method of registering sheets laterally and in skew enables active sheet deskew without translating the sheet in the cross-process direction. A sensor carriage position is controlled to find the sheet edge after which deskew control can start. The average value of the carriage position can then be fed in a feedforward manner to move the image location to match the average paper position. This achieves good average lateral registration and active skew control at a reduced cost.
Abstract:
A system and method are provided to calibrate a sheet velocity measurement derived from a drive nip system incorporating idler encoders. Testing has found that the velocity from an idler encoder system is subject to systematic errors, for example, errors that occur when the system is running media of different thicknesses. The system uses one or more nips with encoders mounted on the idlers and a number of point sensors that are spaced apart in the process direction. The point sensors are used to measure the transmit time of the sheet (lead edge or trail edge) between two sensor positions. The transit time is used to calculate the average sheet velocity. The average sheet velocity is compared with the velocity derived from the idler encoders to derive a correction factor. The velocity sensor are used to calibrate the idler-encoder velocity sensors, providing a worthwhile improvement to idler-encoder technology for media handling (e.g., feeding, transport, and finishing) in direct marking systems.
Abstract:
The presently described embodiments are directed to a method and system for improving sheet registration in a document processing device. The presently described embodiments implement a technique the produces accurate results with merely a small tail wag. To do so, the method ultimately establishes or determines a variety of parameters (e.g. lateral position of a sheet, skew, registration time, nominal sheet velocity, and correction velocity). These parameters are then used by the system to calculate a lateral velocity profile. In this regard, the calculated velocity profiles are applied to the wheels or nips, in the paper path. Thus, the wheels can be controlled and will allow for improved sheet registration in the document processing device.
Abstract:
Parallel printing systems and methods incorporate inverter assemblies for not only inverting media during transport through the system but also to register the media or provide a velocity buffer transports with different drive velocities. The inverter assemblies can include the capability to optionally deskew the media and provide lateral registration corrections. The inverter assembly nip rollers are sufficiently spaced from process drive nip rollers to decouple a document in the inverter assembly from the highway paths. The method comprises combining the inverting function selectively with either the registering or the velocity buffering functions.