Abstract:
An RF power amplifier system comprises an amplitude control loop and a phase control loop. The amplitude control loop adjusts the supply voltage to the power amplifier based upon the amplitude correction signal indicating the amplitude difference between the amplitude of the input signal and an attenuated amplitude of the output signal. The phase control loop adjusts the phase of the input signal based upon a phase error signal indicating a phase difference between phases of the input signal and the output signal. The phase control loop may comprise one or more variable phase delays introducing a relative phase delay to allow the phase differences between the input and output signals of the PA circuit to be within a range compatible with a phase comparator generating the phase error signal, and a low frequency blocking module that removes the larger extent, lower frequency components of the phase error signal.
Abstract:
A method and system for initiating the oscillation of a crystal that controls a crystal oscillator by applying an initiating pulse to said crystal. The initiating pulse having a pulse width less than one half the periodicity of said crystal.
Abstract:
Systems and method for tracking different types of transconductance cells is shown and described. In these multi-cell systems, the addition of one or more tracking control modules allows circuit designers to advantageously incorporate multiple transconductor topologies and their uniquely beneficial characteristics into their designs, without eradicating its centralized multi-cell tuning functionality.
Abstract:
A Phase Locked Loop (PLL) that has a substantially constant gain over a wide frequency range. The frequency range over which the PLL operates is divided into a number of frequency sub-ranges. The circuit includes a mechanism for adjusting the loop gain profile as the PLL moves from one frequency sub-range to another. When the PLL switches to a new frequency sub-range, the loop gain profile is adjusted to a pre-established value. Changes of frequency within each sub-range are then accomplished with the loop gain varying within a pre-established range.