Abstract:
A dual packet configuration for wireless communications including a first portion that is modulated according to a serial modulation and a second portion that is modulated according to a parallel modulation. The serial modulation may be DSSS whereas the parallel modulation may be OFDM. The first portion may include a header, which may further include an OFDM mode bit and a length field indicating the duration the second portion. The first portion may be in accordance with 802.11b to enable dual mode devices to coexist and communicate in the same area as standard 802.11b devices. The dual mode devices can communicate at different or higher data rates without interruption from the 802.11b devices. The packet configuration may include an OFDM signal symbol which further includes a data rate section and a data count section. In this manner, data rates the same as or similar to the 802.11a data rates may be specified between dual mode devices. The first and second portions may be based on the same or different clock fundamentals. For OFDM, the number of subcarriers, pilot tones and guard interval samples may be modified independently or in combination to achieve various embodiments. Also, data subcarriers may be discarded and replaced with pilot tones for transmission. The receiver regenerates the discarded data based on received data, such as using ECC techniques.
Abstract:
Methods and systems for transmitter diversity expansion are provided. The methods and systems include steps and modules for applying a number of data streams (K) to a larger number of antennas (N). This is performed by applying each of the data streams to a single base antenna, such that K data streams are applied to K base antennas, and by shifting and combining the K data streams to produce N-K data streams to apply to N-K extension antennas.
Abstract:
Disclosed herein are various embodiments of methods, systems, and apparatus for increasing packet generation in a digital communication system. In one exemplary method embodiment, subcarriers are added to a packet in a wireless local area network transmission to increase the data rate.
Abstract:
Embodiments of dual mode communication systems and methods are disclosed. On system embodiment, among others, comprises logic configured to perform spatial multiplexing and expanded bandwidth signaling to data.
Abstract:
A power-based hardware antenna diversity method for a wireless transceiver with multiple antennas is disclosed. The method is characterized in the steps of setting the transceiver gain at a maximum level to establish a first story of dynamic power range above a noise floor level, using a high-resolution ADC at a large back-off level relative to the noise floor to detect weak signals within the first story of the dynamic power range, switching antennas and measuring power level for each antenna during signal onset, and selecting an antenna having a largest power level.
Abstract:
An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
Abstract:
A planar, waveguide-based silicon Schottky barrier photodetector includes a third terminal in the form of a field plate to improve the responsivity of the detector. Preferably, a silicide used for the detection region is formed during a processing step where other silicide contact regions are being formed. The field plate is preferably formed as part of the first or second layer of CMOS metallization and is controlled by an applied voltage to modify the electric field in the vicinity of the detector's silicide layer. By modifying the electric field, the responsivity of the device is “tuned” so as to adjust the momentum of “hot” carriers (electrons or holes, depending on the conductivity of the silicon) with respect to the Schottky barrier of the device. The applied potential functions to align with the direction of momentum of the “hot” carriers in the preferred direction “normal” to the silicon-silicide interface, allowing for an increased number to move over the Schottky barrier and add to the generated photocurrent.
Abstract:
An optical interconnection arrangement for use in high data applications is presented that eliminates the need for extensive serialization/de-serialization (SERDES) functionality by utilizing pulse amplitude modulation (PAM) techniques to represent the data in the optical domain while utilizing a separate channel for transmitting an optical clock signal, eliminating the need for clock recovery circuitry on the receive end of the arrangement.
Abstract:
A high speed silicon-based optical modulator with control of the dopant profiles in the body and gate regions of the device reduces the series resistance of the structure without incurring substantial optical power loss. That is, the use of increased dopant values in areas beyond the active region will allow for the series resistance to be reduced (and thus increase the modulating speed of the device) without incurring too large a penalty in signal loss. The dopant profiles within the gate and body regions are tailored to exhibit an intermediate value between the high dopant concentration in the contact areas and the low dopant concentration in the carrier integration window area.
Abstract:
An HDMI interconnect arrangement is presented that performs a pulse-amplitude modulation (PAM) conversion of the TMDS audio/video signals in order to simultaneously transmit all three channels over a single optical fiber. The set of three audio/video TMDS channels is applied as an input to a PAM-8 optical modulator, which functions to encode the set of three channels onto an optically-modulated output signal. The modulated optical signal is thereafter coupled into an optical fiber within an active HDMI cable and transmitted to an HDMI receiver (sink). The TMDS CLK signal is not included in this conversion into the optical domain, but remains as a separate electrical signal to be transmitted along a copper signal path within the active HDMI cable.