Abstract:
A method of layout optimization containing parameterized cells includes reading a physical design containing parameterized cells, creating a new version for each of usage of a given parameterized cell. The method optimizes physical design shapes of each new version of the parameterized cell by assigning variables to parameters of the parameterized cell according to a desired objective. Then, the method updates the parameters of each new version of the parameterized cell and replaces each new version of the parameterized cell with an instance of the parameterized cell having updated parameters. The method can optionally adjust physical design shapes based on constraints related to the parameters.
Abstract:
A method of modifying a VLSI layout for performance optimization includes defining a revised set of ground rules for a plurality of original device shapes to be modified and flattening the plurality of original device shapes to a prime cell. A layout optimization operation is performed on the flattened device shapes, based on the revised set of ground rules, so as to create a plurality of revised device shapes. An overlay cell is then created from a difference between the revised device shapes and the original device shapes.
Abstract:
Approaches are provided for fixing pin mismatches from swapping library cells in layout migration. Specifically, a method is provided that includes collecting information about a first technology pin from a library cell in a first technology. The method further includes swapping the library cell in the first technology with a library cell in a second technology. The method further includes collecting information about a second technology pin from the library cell in the second technology. The method further includes building a pin-mapping table that is configured to map the first technology pin to the second technology pin. The method further includes scaling a layout from the first technology to the second technology. The method further includes modifying the layout based on the pin-mapping table to match the at least one first technology pin to the at least one second technology pin while satisfying ground rules of the second technology.
Abstract:
An adaptive weighting method for layout optimization differentiates different priorities by assigning the weight of a higher priority (pi) to be multiple of the weight of a lower priority (pi−1) where W(pi)=mi % W(pi−1. To avoid numerical imprecision, this method keeps the total cost in the objective function within a trustable range by scaling the initial weights in the objectives, while maintaining relativity, to produce the scaled weights.
Abstract:
A method of polygonal area design rule correction for use in an electronic design automation tool for governing integrated circuit (IC) design layouts using one-dimensional (1-D) optimization, with steps of analyzing IC design layout data to identify violating polygons, partitioning violating polygons into rectangles in a direction of optimization, formulating an area constraint for each violating polygon to formulate a global linear programming (LP) problem that includes each constraint for each violating polygon and solving the global LP problem to obtain a real-valued solution. A next LP problem is created for each area constraint, and solved. The creating a next and solving the next LP problem and solving are repeated until the last “next LP problem” is solved using constraints and objectives representing sums or differences of no more than two optimization variables.