Abstract:
A method of coating an implantable medical device, such as a stent, is disclosed. The method includes applying a formulation on a first polymer layer containing a therapeutic substance to form a second layer. The formulation can contain a highly hydrophobic polymer or a solvent which is a poor solvent for the drug or the polymer of the first layer. The formulation can have a low surface tension value or a high Weber number value.
Abstract:
A prodrug comprising a heparin and a drug is provided. The prodrug can be used to form a coating on a medical device. The prodrug can also be used with a polymeric material to form a coating on a medical device. The polymeric material can be a hydrophobic polymer, a hydrophilic polymer, a non-fouling polymer, or combinations thereof. The medical device can be implanted in a human being for the treatment of a disease such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Abstract:
A prodrug comprising a heparin and a drug is provided. The prodrug can be used to form a coating on a medical device. The prodrug can also be used with a polymeric material to form a coating on a medical device. The polymeric material can be a hydrophobic polymer, a hydrophilic polymer, a non-fouling polymer, or combinations thereof. The medical device can be implanted in a human being for the treatment of a disease such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Abstract:
The medical devices of the invention comprise a portion having a porous surface for release of at least one biologically active agent therefrom. The porous surface is made of a material such as a polymer having a plurality of voids. To load the porous surface with a biologically active agent or drug, an electrophoresis method is employed. In this method, a device having a porous surface is placed into a drug solution or suspension, along with an electrode. An electric current is applied to the device and electrode. Under such a current, the drug, which has a positive or negative charge, will be loaded into the pores or voids of the porous surface.
Abstract:
A method of manufacturing an implantable medical device including applying a composition to an implantable medical device, the composition including a polymer, an active agent and a solvent; allowing the solvent to evaporate to form a dry coating, the dry coating comprising less than about 2% residual fluid content (w/w); applying a fluid to the dry coating, the fluid being substantially free from any polymer; and allowing the fluid to evaporate from the coating.
Abstract:
A therapeutic composition is provided including a polysaccharide or a cationic peptide dissolved in an organic substance. The polysaccharide can be heparin or a derivative of heparin. The cationic peptide can be L-arginine, oligo-L-arginine or poly-L-arginine. The organic substance can be formamide. A method of coating an implantable medical device is also provided, comprising applying the therapeutic composition to the device and allowing the organic substance to evaporate. The device can be a stent.
Abstract:
A therapeutic composition is provided including a polysaccharide or a cationic peptide dissolved in an organic substance. The polysaccharide can be heparin or a derivative of heparin. The cationic peptide can be L-arginine, oligo-L-arginine or poly-L-arginine. The organic substance can be formamide. A method of coating an implantable medical device is also provided, comprising applying the therapeutic composition to the device and allowing the organic substance to evaporate. The device can be a stent.
Abstract:
A coating and method for a coating an implantable device or prostheses are disclosed. The coating includes an undercoat of polymeric material containing an amount of biologically active material, particularly heparin, dispersed therein. The coating further includes a topcoat which covers less than the entire surface of the undercoat and wherein the topcoat comprises a polymeric material substantially free of pores and porosigens. The polymeric material of the topcoat can be a biostable, biocompatible material which provides long term non-thrombogenicity to the device portion during and after release of the biologically active material.