Abstract:
The invention relates to a method for producing at least in regions an oxidation protection coating on a component of a thermal gas turbine. In accordance with the invention, the method comprises the steps of coating the component at least in regions with a lacquer, which comprises at least one UV-curable binder and metal particles, curing the lacquer by exposure to UV light, and thermal treatment of the component at least in the region of the cured lacquer for production of the oxidation protection coating.
Abstract:
A porous carbon material composite formed of a porous carbon material and a functional material and equipped with high functionality. The porous carbon material composite is formed of (A) a porous carbon material obtainable from a plant-derived material having a silicon (Si) content of 5 wt % or higher as a raw material; and (B) a functional material adhered on the porous carbon material, and has a specific surface area of 10 m2/g or greater as determined by the nitrogen BET method and a pore volume of 0.1 cm3/g or greater as determined by the BJH method and MP method.
Abstract:
Methods, processes, compositions and systems for preventing leaching effects from water pipes (such as lead, steel and copper) having an inner diameter of at least approximately 12 mm. 2-part thermoset resin coating is applied to the inner surfaces of the pipes where the curing agent can be a phenol free and plasticizer free adduct type. The coating can reduce heavy metals, such as lead, from leaching from installed pipes to less than approximately 10 μg/L (10 ppb). When cured, specific leachates, Bisphenol A and Epichlorohydrin from the coatings will be (less than)
Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B)的化合物(其中0.9
Abstract:
An apparatus for treating sheet-like material, in particular panels, film or foil, the apparatus having at least one bar-shaped or rod-shaped strip which is disposed so as to be transverse to the longitudinal direction of the sheet-like material, the sheet-like material being moved past the strip in the longitudinal direction, wherein the strip, at least across part of the external face thereof that faces the sheet-like material, is composed of a porous fluid-permeable metal foam, and wherein an arrangement for conveying a treatment fluid through the metal foam toward the sheet-like material is provided.
Abstract:
The present invention relates to a membrane comprising a bulkhead layer, wherein more than 50% by weight of the bulkhead layer is composed of PVC, and a barrier layer. The barrier layer can, on the one hand, be a barrier layer S1, wherein the barrier layer S1 has a polyvinyl alcohol layer comprising more than 50% by weight of copolymer PA, which is connected to the bulkhead layer by a polyurethane layer, wherein more than 10% by weight of the polyurethane layer is composed of polyurethane PUR. The barrier layer can, on the other hand, be a barrier layer S2, wherein the barrier layer S2 has a composition comprising 5-50% by weight of polyurethane PUR and 50-95% by weight of copolymer PA. The membranes according to the invention have significantly lower plasticizer migration compared to the membranes of the prior art and are distinguished by improved resistance to aging, particularly as regards the adherence of the barrier layer on the bulkhead layer, and imperviousness to damp.
Abstract:
Various embodiments of methods for coating stents are described herein. Applying a composition including polymer component and solvent to a stent substrate followed by exposing the polymer component to a temperature equal to or greater than a Tg of the polymer component is disclosed. Repeating the applying and exposing one or more times to form a coating with the result that the solvent content of the coating after the final exposing step is at a level suitable for a finished stent is further disclosed.
Abstract:
According to one embodiment, a film forming apparatus includes: a stage on which a coating object is placed; a rotation mechanism rotating the stage; an application nozzle supplying a coating material to the coating object; an application moving mechanism moving the application nozzle; a controller which controls the rotation mechanism and application moving mechanism to rotate the stage and move the application nozzle between the rotation center and the outer edge and controls the application nozzle to apply the coating material to the coating object; and a sound wave generator which generates a sound wave. The film forming apparatus projects the sound wave onto the surface of the coating film.
Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B),通式(2)表示的化合物(其中0.9
Abstract:
A wall surface of a film forming container is heated to or above a vaporization temperature of a material monomer, which is used to form an organic film, by using an external heater formed along the wall surface of the film forming container, substrates are heated to a thermal polymerization reaction temperature by using an internal heater that is disposed apart from the external heater and near a substrate-supporting container in which the substrates are received, and the organic film is formed through thermal polymerization occurring on the substrates by supplying the material monomer into the film forming container.