Abstract:
During the formation of complex metallization systems, a conductive cap layer may be formed on a copper-containing metal region in order to enhance the electromigration behavior without negatively affecting the overall conductivity. At the same time, a thermo chemical treatment may be performed to provide superior surface conditions of the sensitive dielectric material and also to suppress carbon depletion, which may conventionally result in a significant variability of material characteristics of sensitive ULK materials.
Abstract:
In a complex metallization system, the probability of dielectric breakdown may be reduced by vertically separating a critical area of high electric field strength and an area of reduced dielectric strength of the interlayer dielectric material. For this purpose, the interlayer dielectric material may be recessed after forming the metal regions and/or the metal regions may be increased in height and the corresponding recess may be refilled with an appropriate dielectric material.
Abstract:
During the formation of complex metallization systems, a conductive cap layer may be formed on a copper-containing metal region in order to enhance the electromigration behavior without negatively affecting the overall conductivity. At the same time, a thermo chemical treatment may be performed to provide superior surface conditions of the sensitive dielectric material and also to suppress carbon depletion, which may conventionally result in a significant variability of material characteristics of sensitive ULK materials.
Abstract:
Metal fuses in semiconductor devices may be formed on the basis of additional mechanisms for obtaining superior electromigration in the fuse bodies. To this end, the compressive stress caused by the current-induced metal diffusion may be restricted or reduced in the fuse body, for instance, by providing a stress buffer region and/or by providing a dedicated metal agglomeration region. The concept may be applied to the metallization system and may also be used in the device level, when fabricating the metal fuse in combination with high-k metal gate electrode structures.
Abstract:
In a test structure for determining dielectric breakdown events of a metallization system of semiconductor devices, a built-in compliance functionality may allow reliable switching off of the test voltage prior to causing high leakage currents, which may conventionally result in significant damage. Consequently, further failure analysis may be possible after the occurrence of a dielectric breakdown event.
Abstract:
In a sophisticated metallization system, enhanced electromigration behavior may be accomplished by incorporating electromigration barriers into metal lines after a given distance, which may be accomplished by providing an increased width in order to obtain an enhanced average grain size in the intermediate metal regions of increased lateral width. Consequently, the electromigration induced material diffusion may encounter an overall increased grain size along the entire depth of the metal lines, thereby resulting in a significantly reduced electromigration effect and thus enhanced reliability of the critical metal lines.