摘要:
A highly stressed dielectric material, such as a tensile stressed material, may be deposited in a conformal manner so as to respect any deposition constraints caused by pronounced surface topography of highly scaled semiconductor devices, followed by the deposition of a buffer material having enhanced gap-filling capabilities. Thereafter, a further stress-inducing layer is deposited to form a doublet structure, which acts on the transistor elements, thereby enhancing overall performance, without increasing the probability of creating deposition-related irregularities. Hence, production yield as well as performance of highly scaled semiconductor devices may be increased.
摘要:
A new technique is disclosed in which a barrier/cap layer for a copper based metal line is formed by using a thermal-chemical treatment based on hydrogen with a surface modification on the basis of a silicon-containing precursor followed by an in situ plasma based deposition of silicon based dielectric barrier material. The thermal-chemical cleaning process is performed in the absence of any plasma ambient.
摘要:
By forming a buffer material above differently stressed contact etch stop layers followed by the deposition of a further stress-inducing material, enhanced overall device performance may be accomplished, wherein an undesired influence of the additional stress-inducing layer may be reduced in device regions, for instance, by removing the additional material or by performing a relaxation implantation process. Furthermore, process uniformity during a patterning sequence for forming contact openings may be enhanced by partially removing the additional stress-inducing layer at an area at which a contact opening is to be formed.
摘要:
By performing a plasma treatment for efficiently sealing the surface of a stressed dielectric layer containing silicon nitride, an enhanced performance during the patterning of contact openings may be achieved, since nitrogen-induced resist poisoning may be significantly reduced during the selective patterning of stressed layers of different types of intrinsic stress.
摘要:
A new technique is disclosed in which a barrier/capping layer for a copper-based metal line is formed by using a thermal-chemical treatment with a surface modification on the basis of a silicon-containing precursor followed by an in situ plasma-based deposition of silicon nitride and/or silicon carbon nitride. The thermal-chemical treatment is performed on the basis of an ammonium/nitrogen mixture in the absence of any plasma ambient.
摘要:
A method of forming a multi-layer stack over a low-k dielectric layer is disclosed, wherein the multi-layer stack provides an improved anti-reflective effect and an enhanced protection of the underlying low-k dielectric material during the chemical mechanical polishing process. The multi-layer stack includes silicon dioxide based sub-layers, which may be formed in a highly efficient, non-expensive plasma enhanced deposition method, wherein the optical characteristics may be adjusted by varying a ratio of silane and nitrogen oxide during the deposition.
摘要:
A semiconductor structure comprises a transistor element formed in a substrate. A stressed layer is formed over the transistor element. The stressed layer has a predetermined tensile intrinsic stress of about 900 MPa or more. Due to this high intrinsic stress, the stressed layer exerts considerable elastic forces to the channel region of the transistor element. Thus, tensile stress is created in the channel region. The tensile stress leads to an increase of the electron mobility in the channel region.
摘要:
The present disclosure provides manufacturing techniques and semiconductor devices in which performance of P-channel transistors may be enhanced on the basis of a stress mechanism that involves the deposition of a dielectric bi-layer system. Contrary to conventional strategies, an additional pre-treatment may be performed prior to the deposition of an adhesion layer in a plasma-free process atmosphere, thereby enabling a reduced thickness of the adhesion layer and a higher internal stress level of the subsequent top layer.
摘要:
In sophisticated semiconductor devices, non-insulating materials with extremely high internal stress level may be used in the contact level in order to enhance performance of circuit elements, such as field effect transistors, wherein the non-insulating material may be appropriately “encapsulated” by dielectric material. Consequently, a desired high strain level may be obtained on the basis of a reduced layer thickness, while still providing the insulating characteristics required in the contact level.
摘要:
When forming complex metallization systems on the basis of copper, the very last metallization layer may receive contact regions on the basis of copper, the surface of which may be passivated on the basis of a dedicated protection layer, which may thus allow the patterning of the passivation layer stack prior to shipping the device to a remote manufacturing site. Hence, the protected contact surface may be efficiently re-exposed in the remote manufacturing site on the basis of an efficient non-masked wet chemical etch process.