Abstract:
The input component includes a molding that forms an external frame, a sensor sheet formed by providing a sensor electrode on a base sheet formed of a resin film, the sensor sheet being installed inside the molding, a display element capable of being illuminated by an internal light source, a light shielding portion that shields a light from the internal light source, the display element being illuminated when the internal light source is on, a contact with the display element enabling an input operation, a colored transparent layer formed so as to have a color tone that creates a blackout in which the display element becomes integrated with the light shielding portion surrounding the display element when the internal light source is off so as to become difficult to perceive, the colored transparent layer being provided so as to be layered on the display element, and a light diffusing layer.
Abstract:
A touch panel device in which a touch panel provided with a switch display and a touch sensor having a plurality of electrodes that include a chevron-shaped portion and a valley-shaped portion and that correspond to the switch display are disposed in a stacked manner, a slide input being capable of being performed by slide operation in an arrangement direction of the electrodes, in which, among intersection angles formed by intersection between a virtual line extending in the slide operation direction and a valley bottom of the valley-shaped portion, a valley side external angle B that is an external angle of each electrode is larger than, among intersection angles formed by intersection between the virtual line and a peak portion of the chevron-shaped portion, a chevron side internal angle that is an internal angle of each electrode, and a buried portion that raises the valley bottom is provided in each electrode.
Abstract:
The input component includes a molding that forms an external frame, a sensor sheet formed by providing a sensor electrode on a base sheet formed of a resin film, the sensor sheet being installed inside the molding, a display element capable of being illuminated by an internal light source, a light shielding portion that shields a light from the internal light source, the display element being illuminated when the internal light source is on, a contact with the display element enabling an input operation, a colored transparent layer formed so as to have a color tone that creates a blackout in which the display element becomes integrated with the light shielding portion surrounding the display element when the internal light source is off so as to become difficult to perceive, the colored transparent layer being provided so as to be layered on the display element, and a light diffusing layer.
Abstract:
A thermally conductive sheet is obtained by stacking a carbon fiber oriented thermally conductive layer and an electrically insulating thermally conductive layer, the carbon fiber oriented thermally conductive layer containing a carbon fiber powder, which has a fiber axis oriented in a sheet thickness direction and is contained in a polymer matrix, the electrically insulating thermally conductive layer having a heat conducting property and an electrical insulation property and containing an electrically insulating thermally conductive filler dispersed in a polymer matrix. This thermally conductive sheet has both a high heat conducting property and an electrical insulating property, is easy to be fixed to an object to be attached, and has excellent handleability.
Abstract:
A touch sensor includes a sensor sheet that includes a plurality of sensor electrodes, wires that extend from the sensor electrodes, and a connection portion for connection to a substrate. The sensor sheet is formed with a body portion in which the sensor electrodes are formed, and a tail portion that projects from the body portion and that includes a terminal. A protective layer is stacked on at least a part of the tail portion. A folded portion in which the sensor sheet has been bent permanently is formed in the tail portion on which the protective layer is stacked.
Abstract:
A curable thermally conductive grease la contains a curable liquid polymer, a thermally conductive filler (A) having an average particle diameter of less than 10 μm, and a thermally conductive filler (B) having an average particle diameter of 10 μm or more, the ratio by volume of the thermally conductive filler (A) to the thermally conductive filler (B), i.e., (A)/(B), being 0.65 to 3.02, and the curable thermally conductive grease having a viscosity of 700 Pa·s to 2070 Pa·s, in which after the curable thermally conductive grease is applied to the heat-generating body or the heat-dissipating body to a thickness of 5 mm, the curable thermally conductive grease has slump resistance in which the curable thermally conductive grease does not flow down when the heat-generating body or the heat-dissipating body is vertically arranged.
Abstract:
Provided is a viscous-fluid-enclosing damper which attenuates, by using viscous resistance of a vibration-damping composition, vibrations transmitted between a support and an object to be supported, the support and object being attached to a closed container enclosing the vibration-damping composition of a viscous fluid. The viscous-fluid-enclosing damper alters few vibration-damping properties even when used under high temperatures and/or conditions where the vibrations are repeatedly generated for a prolonged period. Also provided is the vibration-damping composition which is used for the viscous-fluid-enclosing damper. The viscous fluid contains a viscous liquid having dispersed therein at least one type of heat-resistant resin particles and a dripping inhibitor, the particles being selected from polyethylene and nylon having an average molecular weight of from 50×104 to 600×104 and an average particle size of from 10 μm to 200 μm and preferably from 10 μm to 160 μm.
Abstract:
A sensor sheet-containing exterior component includes an exterior member; a sensor sheet having a sensor electrode and disposed on a back surface of the exterior member; and a mounting plate that holds the sensor sheet in close contact with the exterior member, wherein the mounting plate has a front surface shape that substantially corresponds to a back surface shape of the exterior member and is configured to engage with the exterior member, and a sensor sheet-fixing unit is provided between the mounting plate and the sensor sheet so as to fix the sensor sheet to the mounting plate along the front surface shape of the mounting plate.
Abstract:
A touch sensor includes a sensor electrode layer having a plurality of sensor electrodes, a front surface protective layer disposed on an operation surface side, and a back surface protective layer disposed on an opposite side of the operation surface, the front surface protective layer and the back surface protective layer being stacked together. In the touch sensor, the back surface protective layer includes a suppressing member configured to prevent easy detection of a change in capacitance from the opposite side of the operation surface.
Abstract:
A liquid-encapsulation heat dissipation member is prepared by encapsulating a thermally conductive fluid in a closed container nd dissipates heat transferred from an electronic device in contact with the closed container, wherein the closed container includes an elastic portion composed of a thin elastomer serving as a surface to come into contact with the electronic device and following the shape of the electronic device and a heat dissipation portion composed of a hard material for dissipating heat, and the thermally conductive fluid contains a thermally conductive powder and has a viscosity of 200,000 mPa·s to 3,000,000 mPa·s.