Abstract:
A virtual wire assembly is disclosed. The assembly comprises a substantially electrically-nonconductive substrate; and a plurality of hermetic feedthroughs each comprising a conductive region extending transversely through the substrate to form a conductive pathway with accessible surfaces at opposing ends thereof, wherein each conductive pathway is electrically isolated from other conductive pathways. In certain embodiments of this aspect of the invention, the substantially electrically-nonconductive substrate is a semiconductor device, and the conductive regions each are comprised of an n-type or a p-type doped semiconductor material. Also disclosed are implanted medical devices requiring electronic or other components to be retained in a hermetic enclosure, such as cochlear and other sensory or neural prosthetic devices.
Abstract:
The invention is a distributed implantable neuro-stimulation system, comprising an implant controller including control logic to transmit two time-varying power signals, varying between two levels and out of phase with the other, and a command signal modulated onto at least one of the power signals. One or more electrode cells, each having control logic to extract charge from the power signals and recover commands from the command signal. A two-wire bus interconnecting the implant controller and all the electrode cells, to carry one of the time varying signals in each of the two wires, and to carry the command signal.
Abstract:
A virtual wire assembly that includes a substantially electrically-nonconductive substrate and a plurality of hermetic feedthroughs including a conductive region extending transversely through the substrate to form a conductive pathway with accessible surfaces at opposing ends thereof, wherein each conductive pathway is electrically isolated from other conductive pathways. In certain embodiments of this aspect of the invention, the substantially electrically-nonconductive substrate is a semiconductor device, and the conductive regions each include an n-type or a p-type doped semiconductor material.
Abstract:
One disclosed embodiment of the present invention is a medical device having an electronic assembly and battery contained within a housing. Sealed in the housing is a heat absorption medium for regulating the temperature of the medial device, wherein said heat absorption medium undergoes a state change at a state change temperature of 36° Celsius or greater.
Abstract:
A virtual wire assembly is disclosed. The assembly comprises a substantially electrically-nonconductive substrate; and a plurality of hermetic feedthroughs each comprising a conductive region extending transversely through the substrate to form a conductive pathway with accessible surfaces at opposing ends thereof, wherein each conductive pathway is electrically isolated from other conductive pathways. In certain embodiments of this aspect of the invention, the substantially electrically-nonconductive substrate is a semiconductor device, and the conductive regions each are comprised of an n-type or a p-type doped semiconductor material. Also disclosed are implanted medical devices requiring electronic or other components to be retained in a hermetic enclosure, such as cochlear and other sensory or neural prosthetic devices.
Abstract:
A speech processor unit (12) for a cochlear implant system. The speech processor unit (12) comprises a signal processor for processing incoming auditory signals and for forwarding processed signals to an implanted component (18) of the system, a monitoring means for monitoring a predetermined parameter, and a controller, controlled by the signal processor, for placing the unit in an idle state in the absence of the parameter. The predetermined parameter can comprise the presence or absence of the implanted receiver antenna coil (22) relative to the external antenna coil (16). The invention allows the speech processor unit (12) to be supplied without a physical on and off switch.
Abstract:
A distributed implantable neurostimulation system. One or more electrode arrays each have at least one electrode configured to be positioned at a desired implant location within the body. An implantable control unit is configured to selectively direct stimulus and/or telemetry instructions and power to each electrode of each array. A shared bus extends to each of the plurality of electrode arrays, the bus interconnecting each array with the implantable control unit. There is at least one electrode cell associated with each electrode array. The electrode cell obtains electrical power and command signals from the shared bus, and controls operation of each electrode associated with that electrode cell. The bus is connected to the control unit and/or the electrode cell by docking contacts of the bus to form electrical contact with contacts of the control unit and/or electrode cell.
Abstract:
Charging a battery of an implanted device involves positioning an external charging coil proximal to a charging locale. An implant recipient and the implanted device are expected to occupy the charging locale from time to time. The charging coil has a coil area which is significantly larger than a coil area of an implanted coil, and is configured to produce an electromagnetic field throughout the charging locale. When an implant recipient is within the charging locale, the external charging coil is driven with a signal which transmits electromagnetic power from the charging coil to the implanted coil.
Abstract:
An implantable component (30) of a cochlear implant system comprising a housing for a stimulator unit (31) that is adapted to output one or more stimulation signals and an electrode assembly (30) adapted to apply electrical stimulation in accordance with the output of the stimulator unit (31). On implantation, the housing is positionable such that the electrode assembly (20) extends from the housing at least initially in a downward orientation toward the mastoid cavity before entering the cochlea. An external component (50, 60 or 70) of a cochlear implant system comprising a support for mounting to the ear of an recipient and an external signal transmitter coil (53) wherein the signal transmitter coil (53) is movably mounted to at least a portion of the support.