Abstract:
Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent. Further, the distal component may comprise at least one z-stent stent coupled to the distal end of the graft and extending distally therefrom that reduces proximal migration of the distal component.
Abstract:
A stent graft (40) for treating Type-A dissections in the ascending aorta (22) is provided with a plurality of diameter reducing suture loops (56-60) operable to constrain the stent graft during deployment thereof in a patient's aorta. The diameter reducing loops (56-60) allow the stent graft (40) to be partially deployed, in such a manner that its location can be precisely adjusted in the patient's lumen. In this manner, the stent graft can be placed just by the coronary arteries (26, 28) with confidence that these will not be blocked. The stent graft (40) is also provided with proximal and distal bare stents (44,52) for anchoring purposes.
Abstract:
Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent. Further, the distal component may comprise at least one z-stent stent coupled to the distal end of the graft and extending distally therefrom that reduces proximal migration of the distal component.
Abstract:
An endoluminal prosthesis and systems and methods for making the prosthesis are provided. In one example, a patterned graft material for a prosthesis includes a network of electrospun fibers. The network of electrospun fibers may include a plurality of continuous electrospun fibers. The fibers may be collected on a collector plate using an electrospinning process to form the network of fibers. The patterned graft material also may include a plurality of openings in the network of electrospun fibers. The plurality of openings may be arranged in a pattern. The network of electrospun fibers may include a plurality of edges, each surrounding a corresponding one of the plurality of openings. Each of the plurality of edges may include at least one electrospun fiber of the network of electrospun fibers. A majority of the electrospun fibers of the plurality of edges may be continuous at the edges.
Abstract:
A stent structure is provided with an alternating arrangement of hoop cells and flex cells. Longitudinal struts extend through the hoop cells but do not extend through the flex cells. The flex struts in the flex cells are wider than the hoop struts in the hoop cells.
Abstract:
A balloon expandable covered stent consists of a plurality of primary stent units, each having an undulating shape defined by a series of primary strut members converging to form peaks and valleys. The primary stent units are assembled into a single cylindrical structure of the stent by connecting corresponding peaks with secondary strut members. Generally, surfaces of the stent may then coated with a polymeric, hyper-elastic material, preferably Thoralon®, by pre-expanding the stent prior to coating.
Abstract:
A stent graft (40) for treating Type-A dissections in the ascending aorta (22) is provided with a plurality of diameter-reducing suture loops (56-60) operable to constrain the stent graft during deployment thereof in a patient's aorta. The diameter-reducing loops (56-60) allow the stent graft (40) to be partially deployed, in such a manner that its location can be precisely adjusted in the patient's lumen. In this manner, the stent graft can be placed just by the coronary arteries (26, 28) with confidence that these will not be blocked. The stent graft (40) is also provided with proximal and distal bare stents (44,52) for anchoring purposes.
Abstract:
A perfusion device and a delivery system for repair of a damaged portion of a body vessel. Perfusion device can include a tubular body that is self-expandable, having a proximal portion, a distal portion, and an intermediate portion. One or more series of barbs can be disposed circumferentially along the intermediate portion. Barbs are capable of penetrating into the tunica intima and tunica media of said vessel wall upon insertion of said device into said body vessel, and not into said tunica adventitia. A graft can be associated with the tubular body. Graft has a proximal end and a distal end, and preferably extends entirely along a luminal wall of the tubular body. Graft may also extend along an exterior surface of the tubular body at the proximal and distal portions. A remodelable covering can be applied along the intermediate portion. Delivery devices for the perfusion implant and methods of delivering the perfusion implant are also provided.
Abstract:
An endoluminal prosthesis and systems and methods for making the prosthesis are provided. In one example, a patterned graft material for a prosthesis includes a network of electrospun fibers. The network of electrospun fibers may include a plurality of continuous electrospun fibers. The fibers may be collected on a collector plate using an electrospinning process to form the network of fibers. The patterned graft material also may include a plurality of openings in the network of electrospun fibers. The plurality of openings may be arranged in a pattern. The network of electrospun fibers may include a plurality of edges, each surrounding a corresponding one of the plurality of openings. Each of the plurality of edges may include at least one electrospun fiber of the network of electrospun fibers. A majority of the electrospun fibers of the plurality of edges may be continuous at the edges.
Abstract:
A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.