Abstract:
An endoluminal prosthesis and systems and methods for making the prosthesis are provided. In one example, a patterned graft material for a prosthesis includes a network of electrospun fibers. The network of electrospun fibers may include a plurality of continuous electrospun fibers. The fibers may be collected on a collector plate using an electrospinning process to form the network of fibers. The patterned graft material also may include a plurality of openings in the network of electrospun fibers. The plurality of openings may be arranged in a pattern. The network of electrospun fibers may include a plurality of edges, each surrounding a corresponding one of the plurality of openings. Each of the plurality of edges may include at least one electrospun fiber of the network of electrospun fibers. A majority of the electrospun fibers of the plurality of edges may be continuous at the edges.
Abstract:
A method of making a stent-graft is provided. The method includes mounting a stent on a mandrel so that the stent is stretched when it is on the mandrel. A graft layer is then adhered to the stent while it is mounted on the mandrel. When the stent-graft is removed from the mandrel, the stent contracts and the graft layer becomes partially wrinkled when the stent is in its expanded relaxed state.
Abstract:
A method of treating an intravascular site in a patient includes spraying jets of treatment fluid out of spray orifices formed in an elongate catheter body, and changing an impingement pattern of the treatment fluid on material within the intravascular site in response to a torque induced by a back pressure of the jets. A thrombolysis catheter includes an elongate catheter body having a plurality of spray orifices formed in a body wall, and communicating with a fluid lumen longitudinally extending in the elongate catheter body. The plurality of spray orifices define a torque inducing spray jet pattern, whereby a back pressure of spray jets exiting the spray orifices induces a torque on the elongate catheter body.
Abstract:
An endoluminal prosthesis and systems and methods for making the prosthesis are provided. In one example, a patterned graft material for a prosthesis includes a network of electrospun fibers. The network of electrospun fibers may include a plurality of continuous electrospun fibers. The fibers may be collected on a collector plate using an electrospinning process to form the network of fibers. The patterned graft material also may include a plurality of openings in the network of electrospun fibers. The plurality of openings may be arranged in a pattern. The network of electrospun fibers may include a plurality of edges, each surrounding a corresponding one of the plurality of openings. Each of the plurality of edges may include at least one electrospun fiber of the network of electrospun fibers. A majority of the electrospun fibers of the plurality of edges may be continuous at the edges.
Abstract:
A method of making a stent-graft is provided. The method includes mounting a stent on a mandrel so that the stent is stretched when it is on the mandrel. A graft layer is then adhered to the stent while it is mounted on the mandrel. When the stent-graft is removed from the mandrel, the stent contracts and the graft layer becomes partially wrinkled when the stent is in its expanded relaxed state.
Abstract:
An infusion mechanism for treating an intraluminal site in a patient includes an infusion catheter having an elongate body with a proximal body end defining at least one fluid supply orifice, and a distal body end. The elongate body defines a high head loss lumen in fluid communication with a first set of side ports defining a proximal infusion zone. The elongate body further defines a low head loss lumen in fluid communication with a second set of side ports defining a distal infusion zone.
Abstract:
An infusion mechanism for treating an intraluminal site in a patient includes an infusion catheter having an elongate body with a proximal body end defining at least one fluid supply orifice, and a distal body end. The elongate body defines a high head loss lumen in fluid communication with a first set of side ports defining a proximal infusion zone. The elongate body further defines a low head loss lumen in fluid communication with a second set of side ports defining a distal infusion zone.
Abstract:
A method of treating an intravascular site in a patient includes spraying jets of treatment fluid out of spray orifices formed in an elongate catheter body, and changing an impingement pattern of the treatment fluid on material within the intravascular site in response to a torque induced by a back pressure of the jets. A thrombolysis catheter includes an elongate catheter body having a plurality of spray orifices formed in a body wall, and communicating with a fluid lumen longitudinally extending in the elongate catheter body. The plurality of spray orifices define a torque inducing spray jet pattern, whereby a back pressure of spray jets exiting the spray orifices induces a torque on the elongate catheter body.
Abstract:
A spray system and method of using such spray system to fabricate a polymer membrane structure for use as a vascular graft or tissue engineered scaffold is provided. Generally, this spray system includes the use of at least two spray apparatus to apply different polymer and solvent mixtures to the outer surface of a mandrel to form a blended layer. Upon curing of the blended layer, phase separation occurs leading to the formation of a polymer membrane structure having variable properties along at least a portion of its longitudinal axis.
Abstract:
A perfusion device and a delivery system for repair of a damaged portion of a body vessel. Perfusion device can include a tubular body that is self-expandable, having a proximal portion, a distal portion, and an intermediate portion. One or more series of barbs can be disposed circumferentially along the intermediate portion. Barbs are capable of penetrating into the tunica intima and tunica media of said vessel wall upon insertion of said device into said body vessel, and not into said tunica adventitia. A graft can be associated with the tubular body. Graft has a proximal end and a distal end, and preferably extends entirely along a luminal wall of the tubular body. Graft may also extend along an exterior surface of the tubular body at the proximal and distal portions. A remodelable covering can be applied along the intermediate portion. Delivery devices for the perfusion implant and methods of delivering the perfusion implant are also provided.