Abstract:
A power amplifier (PA) envelope power supply, radio frequency (RF) PA circuitry, and a process to select a converter operating mode of the PA envelope power supply based on linearity requirements of the RF PA circuitry is disclosed. The PA envelope power supply operates in one of a first converter operating mode and a second converter operating mode. The process for selecting the converter operating mode is based on a required degree of linearity of the RF PA circuitry. The PA envelope power supply provides an envelope power supply signal to the RF PA circuitry. Selection of the converter operating mode may provide efficient operation of the PA envelope power supply and the envelope power supply signal needed for proper operation of the RF PA circuitry.
Abstract:
A power amplifier (PA) envelope power supply, which provides an envelope power supply signal to radio frequency (RF) PA circuitry, and a process to prevent undershoot of the PA envelope power supply is disclosed. The process includes determining if an envelope control signal to the PA envelope power supply has a step change from a high magnitude to a low magnitude that exceeds a step change limit. Such a step change may cause undershoot of the PA envelope power supply. As such, if the step change exceeds the step change limit, the envelope control signal is modified to use an intermediate magnitude for period of time. Otherwise, if the step change does not exceed the step change limit, the envelope control signal is not modified.
Abstract:
The present disclosure relates to a single switching power supply that may either provide envelope power to a first RF power amplifier during a first operating mode, or simultaneously provide envelope power to the first RF power amplifier and to a second RF power amplifier during a second operating mode. In one embodiment, the single switching power supply and the first and second RF power amplifiers may be used in a multiple-input multiple-output (MIMO) RF communications system. As such, during the first operating mode, the first RF power amplifier may transmit a first RF output signal to a first antenna, and during the second operating mode, the first RF power amplifier may transmit the first RF output signal to the first antenna and the second RF power amplifier may transmit a second RF output signal to a second antenna, which may provide diversity.
Abstract:
Power amplifier (PA) control circuitry and PA bias circuitry are disclosed. During one slot of a multislot transmit burst from radio frequency (RF) PA circuitry, the PA control circuitry selects one PA bias level of the RF PA circuitry and the RF PA circuitry has one output power level. The RF PA circuitry has a next output power level during an adjacent next slot of the multislot transmit burst. If the one output power level exceeds the next output power level by more than a power drop limit, then the PA control circuitry maintains the one PA bias level during the adjacent next slot. If the one output power level significantly exceeds the next output power level, but by less than the power drop limit, then the PA control circuitry selects a next PA bias level, which is less than the one PA bias level, during the adjacent next slot.
Abstract:
A power amplifier (PA) envelope power supply and a process to select a converter operating mode of the PA envelope power supply are disclosed. The PA envelope power supply operates in one of a first converter operating mode and a second converter operating mode. The process for selecting the converter operating mode is based on a selected communications mode of a radio frequency (RF) communications system, a target output power from RF PA circuitry of the RF communications system, and a direct current (DC) power supply voltage.
Abstract:
A power amplifier (PA) envelope power supply, radio frequency (RF) PA circuitry, and a process to select a converter operating mode of the PA envelope power supply based on linearity requirements of the RF PA circuitry is disclosed. The PA envelope power supply operates in one of a first converter operating mode and a second converter operating mode. The process for selecting the converter operating mode is based on a required degree of linearity of the RF PA circuitry. The PA envelope power supply provides an envelope power supply signal to the RF PA circuitry. Selection of the converter operating mode may provide efficient operation of the PA envelope power supply and the envelope power supply signal needed for proper operation of the RF PA circuitry.
Abstract:
Radio frequency (RF) power amplifier (PA) circuitry and a PA envelope power supply are disclosed. The RF PA circuitry receives and amplifies an RF input signal to provide an RF output signal using an envelope power supply signal, which is provided by the PA envelope power supply. The RF PA circuitry operates in either a normal RF spectral emissions mode or a reduced RF spectral emissions mode. When reduced RF spectral emissions are required, the RF PA circuitry operates in the reduced RF spectral emissions mode. As such, at a given RF output power, during the reduced RF spectral emissions mode, RF spectral emissions of the RF output signal are less than during the normal RF spectral emissions mode. As a result, the reduced RF spectral emissions mode may be used to reduce interference between RF communications bands.
Abstract:
The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
Abstract:
A power amplifier (PA) envelope power supply, which provides an envelope power supply signal to radio frequency (RF) PA circuitry, and a process to prevent undershoot of the PA envelope power supply is disclosed. The process includes determining if an envelope control signal to the PA envelope power supply has a step change from a high magnitude to a low magnitude that exceeds a step change limit. Such a step change may cause undershoot of the PA envelope power supply. As such, if the step change exceeds the step change limit, the envelope control signal is modified to use an intermediate magnitude for period of time. Otherwise, if the step change does not exceed the step change limit, the envelope control signal is not modified.
Abstract:
A battery assembly for a mobile communication device includes a battery having a mounting surface, wherein a capacity of the battery increases with temperature. The battery assembly further includes a power amplifier assembly mounted to the mounting surface of the battery. The power amplifier assembly includes a power amplifier in thermal communication with the battery and a circuit board configured to receive the power amplifier, wherein the power amplifier is mounted to the circuit board. Generated heat from the power amplifier is transferred to the battery in order to increase the capacity of the battery in a given temperature environment.