Abstract:
An electrical connector includes a carrier having opposite first and second sides. A plurality of contacts are held in the carrier. Each contact includes a first conductive element defining a first conductive path and a second conductive element defining a second conductive path separate from the first conductive path. The first and second conductive paths are configured to electrically connect an electrical component on one side of the carrier to an electrical component on the opposite side of the carrier.
Abstract:
An electrical connector for interconnecting a circuit card to a substrate includes a dielectric housing having an elongated slot which is open for receiving an edge portion of the circuit card, and a plurality of contacts which are spaced-apart along a length of the slot. Each of the contacts has a base portion, a lead extending from the housing for connection with a circuit path on the substrate, and a contact arm having a contact surface which extends into the slot for engaging a respective contact pad on the circuit card. An electrical path through each contact is defined from the contact surface to the lead, the electrical path being relatively long when the contact is undeflected. The contact arm has a free end which engages the base portion of the contact during insertion of the circuit card into the slot, wherein a relatively shorter electrical path through the contact is defined from the contact surface to the lead.
Abstract:
An electronic connector system includes an electronic package and an interposer connector assembly. The electronic package has a body with a conductive member disposed on a mating surface of the body. The conductive member is coupled with a conductive via that extends into the body and is oriented along a center axis. The interposer connector assembly includes a substrate with an elongated conductive pad mounted to the substrate and a contact joined to the conductive pad. The contact engages the conductive member when the electronic package mates with the interposer connector assembly such that the center axis extends through the contact.
Abstract:
A circuit board and connector for use in an electrical connector has been provided. The circuit board comprises first and second signal contacts associated as a differential pair. A ground contact is located immediately adjacent the first signal contact and is joined directly to a ground plane provided within the circuit board. A floated contact is located immediately adjacent the second signal contact. A component interconnects the floated contact to the ground plane, forming an open circuit when a DC signal is impressed on the floated contact and a closed circuit when AC interference is impressed on the floated contact.
Abstract:
An electrical connector includes a carrier having opposite first and second sides. A plurality of contacts are held in the carrier. Each contact includes a first conductive element defining a first conductive path and a second conductive element defining a second conductive path separate from the first conductive path. The first and second conductive paths are configured to electrically connect an electrical component on one side of the carrier to an electrical component on the opposite side of the carrier.
Abstract:
A circuit board and connector for use in an electrical connector has been provided. The circuit board comprises first and second signal contacts associated as a differential pair. A ground contact is located immediately adjacent the first signal contact and is joined directly to a ground plane provided within the circuit board. A floated contact is located immediately adjacent the second signal contact. A component interconnects the floated contact to the ground plane, forming an open circuit when a DC signal is impressed on the floated contact and a closed circuit when AC interference is impressed on the floated contact.
Abstract:
An electrical connector including a housing having a mating interface and a contact interface configured to receive an end of a flexible printed circuit (FPC) having at least one row of FPC contacts, and contacts received in the housing and extending between the mating interface and the contact interface. Each of the contacts being configured to engage a corresponding one of the FPC contacts. An insert member is received within the housing. The insert member includes individual fingers moving independently with respect to one another, and the insert member is configured to be loaded into the housing to a mated position at which each of the fingers separately engage the FPC.
Abstract:
A flex film card edge connector includes a substantially planar substrate having opposite major surfaces joined at an edge; and a flexible film wrapped around the edge and supported on both of the major surfaces. A first and second set of conductive pads are arrayed along the edges on one and the other of the major surfaces. The flexible film has a span that extends around the edge without any electrical connection between the first set of conductive pads and the second set of conductive pads. A flex film cable assembly includes a flexible film configured as an elongated strip having first and second ends, and the flex film card edge connector at least one of the ends. Methods of manufacturing both the flex film card edge connector and the flex film cable assembly are also disclosed.
Abstract:
An electrical contact includes a conductor spirally wrapped about itself from a longitudinal edge. The spirally wrapped conductor defines a longitudinal axis through the contact. The spirally wrapped conductor includes a center spiraled section between first and second contact ends, and the spirally wrapped conductor is compressible along the longitudinal axis.