Abstract:
The present invention is directed to a method of forming halo implant regions in a semiconductor device. In one illustrative embodiment, the method comprises forming a gate electrode above a semiconducting substrate, the substrate being doped with a first type of dopant material, and forming halo implant regions in the substrate adjacent the gate electrode by performing at least the following steps: performing a first angled implant process using a dopant material that is of a type opposite to the first type of dopant material and performing a second angled implant using a dopant material that is of the same type as the first type of dopant material. The method concludes with performing at least one additional implantation process to further form source/drain regions for the device.
Abstract:
The present invention is directed to a method of forming halo implants in a semiconductor device. In one illustrative embodiment, the method comprises forming a structure above a semiconducting substrate, forming a layer of photoresist above the structure and the substrate, and positioning the substrate in an exposure tool that has a light source and a focal plane. The method further comprises positioning the surface of the layer of photoresist in an exposure plane that is different from the focal plane of the exposure tool, exposing the photoresist to the light source of the exposure tool while the surface of the photoresist is in the exposure plane, and developing the layer of photoresist to define an opening in the layer of photoresist around the structure on the substrate.
Abstract:
A system and method for controlling a characteristic of at least one memory cell on a semiconductor is disclosed. The at least one memory cell includes a gate stack, a source, and a drain. The semiconductor includes a surface. In one aspect, the method and system include providing the gate stack on the semiconductor and providing the source including a source dopant having a local peak in concentration. The local peak in concentration of the source dopant is located under the gate stack and in proximity to a portion of the surface of the semiconductor. In another aspect the method and system includes a memory cell on a semiconductor. The semiconductor includes a surface. The memory cell includes a gate stack on the semiconductor, a source, and a drain. The gate stack has a first edge and a second edge. The source is located in proximity to the first edge of the gate stack. The drain is located in proximity to the second edge of the gate stack. A first portion of the source is disposed under the gate stack. The source includes a source dopant having a local peak in concentration of the source dopant. The local peak in concentration of the source dopant is located under the gate stack and in proximity to a portion of the surface of the semiconductor.
Abstract:
A method and system for providing a flash memory cell on a semiconductor is disclosed. In one aspect, the method and system include providing a plurality of gate stacks and providing a drain implant at an angle. The plurality of gate stacks define a plurality of drain areas and a plurality of source areas. The angle is measured from a direction perpendicular to the surface of the semiconductor. The angle allows the plurality of gate stacks to block the drain implant from reaching the plurality of source areas. In another aspect, the method and system include providing a plurality of gate stacks and providing a source implant at an angle. The plurality of gate stacks define a plurality of drain areas and a plurality of source areas. The angle is measured from a direction perpendicular to the surface of the semiconductor. The angle allows the plurality of gate stacks to block the source implant from reaching the plurality of drain areas.
Abstract:
The present invention provides a method and system for the formation of semiconductor devices which reduces band-to-band tunneling current and short-channel effects. The method and system includes implanting first low-dose arsenic into an area in the substrate, thermally diffusing the first low-dose arsenic through a portion of the substrate, implanting a second higher-dose arsenic into the area in the substrate, and diffusing the second higher-dose arsenic into the area in the substrate. Under the present invention, the combination of the first and second arsenic implants has a graded lateral profile which reduces band-to-band tunneling current and short-channel effects. The method also improves the reliability and performance of the semiconductor devices.
Abstract:
A system and method for providing a flash memory cell on a semiconductor substrate are disclosed. The system and method include providing a side implant and providing an implant in at least one of a drain or a source of the flash memory cell.
Abstract:
A method and apparatus for reducing band-to-band currents during the erasure of a flash EEPROM memory cell is provided. The apparatus has a back biasing connection on the substrate at which a biasing voltage is applied during erasure of the flash EEPROM memory cell. The method of applying the biasing voltage to the back biasing connection during erasure of the flash EEPROM memory cell reduces band-to-band current between the source region and the substrate during erasure of the flash memory cell. This reduction provides for gate size reduction in flash memory cells without inducing detrimental short channel effects.
Abstract:
A CMOS circuit is provided that includes a PMOS transistor, an NMOS transistor adjacent the PMOS transistor in a channel width direction, a compressive stress liner overlying the PMOS transistor, and a tensile stress liner overlying the NMOS transistor. A portion of the compressive stress liner and a portion of the tensile stress liner are in a stacked configuration, and an overlap region of the compressive stress liner and the tensile stress liner is sufficient to result in an enhanced transverse stress in the compressive stress liner or the tensile stress liner.
Abstract:
A semiconductor device is disclosed having a conductive gate structure overlying a semiconductor layer having a major surface. An isolation material is recessed within a trench region below the major surface of the semiconductor layer. An epitaxial layer is formed overlying a portion of the major surface and on an active region forming a sidewall of the trench.
Abstract:
A stress enhanced CMOS circuit and methods for its fabrication are provided. One fabrication method comprises the steps of forming an NMOS transistor and a PMOS transistor adjacent the NMOS transistor in a channel width direction, the PMOS transistor and the NMOS transistor separated by an isolation region. A compressive stress liner is deposited overlying the transistors and the isolation region and is etched to remove the compressive stress liner from the NMOS transistor and from a portion of the isolation region. A tensile stress liner is deposited overlying the transistors, the isolation region, and the compressive stress liner and is etched to remove a portion of the tensile stress liner overlying a portion of the compressive stress liner and to leave the tensile stress liner overlying the NMOS transistor, the isolation region, and a portion of the compressive stress liner.