摘要:
A test structure includes first and second pluralities of transistors. The first plurality of transistors includes gate electrodes of a first length. The second plurality of transistors includes gate electrodes of a second length different than the first length. A channel area of the transistors in the first plurality is substantially equal to a channel area of the transistors in the second plurality. A method for using the test structure includes measuring a performance metric of the first and second pluralities of transistors. Variation in the performance metric associated with the first plurality of transistors is compared to variation in the performance metric associated with the second plurality of transistors to identify a random length variation component associated with the first plurality of transistors.
摘要:
A method of programming a transistor-based fuse structure is provided. The fuse structure is realized in a semiconductor device having a semiconductor substrate, transistor devices formed on the semiconductor substrate, and the transistor-based fuse structure formed on the semiconductor substrate. The transistor-based fuse structure includes a plurality of transistor-based fuses, and the method begins by selecting, from the plurality of transistor-based fuses, a first target fuse to be programmed for operation in a low-resistance/high-current state, the first target fuse having a first source, a first gate, a first drain, and a first gate insulator layer between the first gate and the semiconductor substrate. The method applies a first set of program voltages to the first source, the first gate, and the first drain to cause breakdown of the first gate insulator layer such that current can flow from the first source to the first gate through the first gate insulator layer, and from the first gate to the first drain through the first gate insulator layer.
摘要:
A test structure includes first and second pluralities of transistors. The first plurality of transistors includes gate electrodes of a first length. The second plurality of transistors includes gate electrodes of a second length different than the first length. A channel area of the transistors in the first plurality is substantially equal to a channel area of the transistors in the second plurality. A method for using the test structure includes measuring a performance metric of the first and second pluralities of transistors. Variation in the performance metric associated with the first plurality of transistors is compared to variation in the performance metric associated with the second plurality of transistors to identify a random length variation component associated with the first plurality of transistors.
摘要:
The present invention is directed to a method of forming halo implants in a semiconductor device. In one illustrative embodiment, the method comprises forming a structure above a semiconducting substrate, forming a layer of photoresist above the structure and the substrate, and positioning the substrate in an exposure tool that has a light source and a focal plane. The method further comprises positioning the surface of the layer of photoresist in an exposure plane that is different from the focal plane of the exposure tool, exposing the photoresist to the light source of the exposure tool while the surface of the photoresist is in the exposure plane, and developing the layer of photoresist to define an opening in the layer of photoresist around the structure on the substrate.
摘要:
The present invention is directed to a method of forming source/drain regions in a semiconductor device. In one illustrative embodiment, the method comprises forming a gate stack above a semiconducting substrate, forming a recess in said substrate proximate said gate stack, and performing an implantation process to implant dopant atoms into the bottom surface of the recess. The method further comprises forming a layer of epitaxial silicon in the recess, performing a second ion implantation process to form a doped region in at least the epitaxial silicon in the recess, and performing an anneal process to activate the implanted dopant atoms.
摘要:
A transistor-based fuse structure is realized in a semiconductor device having a semiconductor substrate, transistor devices formed on the semiconductor substrate, and the transistor-based fuse structure formed on the semiconductor substrate. The transistor-based fuse structure includes a plurality of transistor-based fuses, and the method begins by selecting, from the plurality of transistor-based fuses, a first target fuse to be programmed for operation in a low-resistance/high-current state, the first target fuse having a first source, a first gate, a first drain, and a first gate insulator layer between the first gate and the semiconductor substrate. The method applies a first set of program voltages to the first source, the first gate, and the first drain to cause breakdown of the first gate insulator layer such that current can flow from the first source to the first gate through the first gate insulator layer, and from the first gate to the first drain through the first gate insulator layer.
摘要:
A first bias charge is provided to first bias region at a first level of an electronic device, the first bias region directly underlying a first transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the first transistor is based upon the first bias charge. A second bias charge is provided to second bias region at the first level of an electronic device, the second bias region directly underlying a second transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the second transistor is based upon the second bias charge.
摘要:
The present invention is directed to a semiconductor device having a gate electrode includes of a plurality of sidewalls, each having a recess formed therein. The present invention is also directed to a method of forming a semiconductor device. In one illustrative embodiment, the method comprises forming a layer of dopant material in a layer of polysilicon and etching the layer of polysilicon to define a gate electrode having a plurality of sidewalls, each of which have a recess formed therein.
摘要:
A first bias charge is provided to first bias region at a first level of an electronic device, the first bias region directly underlying a first transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the first transistor is based upon the first bias charge. A second bias charge is provided to second bias region at the first level of an electronic device, the second bias region directly underlying a second transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the second transistor is based upon the second bias charge.
摘要:
Semiconductor chip design and analysis is enhanced by using a dummy structure for analyzing a test structure in a test chip. According to an example embodiment of the present invention, a dummy structure is formed having structure that is about identical to that of test structure in a test chip. The parasitic capacitance of the dummy structure is determined and used to analyze the test structure. In this manner, the parasitic capacitance associated with the test structure can be accounted for, enhancing the ability to design, test, and debug semiconductor chips.