Abstract:
A semiconductor memory device having a thyristor is manufactured in a manner that makes possible self-alignment of one or more portions of the thyristor. According to an example embodiment of the present invention, a gate is formed over a first portion of doped substrate. The gate is used to mask a portion of the doped substrate and a second portion of the substrate is doped before or after a spacer is formed. After the second portion of the substrate is doped, the spacer is then formed adjacent to the gate and used to mask the second portion of the substrate while a third portion of the substrate is doped. The gate and spacer are thus used to form self-aligned doped portions of the substrate, wherein the first and second portions form base regions and the third portion form an emitter region of a thyristor. In another implementation, the spacer is also adapted to prevent formation of salicide on the portion of the thyristor beneath the spacer, self-aligning the salicide to the junction between the second and third portions. In addition, dimensions such as width and other characteristics of the doped portions that are used to form a thyristor can be controlled without necessarily using a separate mask.
Abstract:
Switching times of a thyristor-based semiconductor device are improved by enhancing carrier drainage from a buried thyristor-emitter region. According to an example embodiment of the present invention, a conductive contact extends to a doped well region buried in a substrate and is adapted to drain carriers therefrom. The device includes a thyristor body having at least one doped emitter region buried in the doped well region. A conductive thyristor control port is adapted to capacitively couple to the thyristor body and to control current flow therein. With this approach, the thyristor can be rapidly switched between resistance states, which has been found to be particularly useful in high-speed data latching implementations including but not limited to memory cell applications.
Abstract:
A semiconductor device is formed having a thyristor, a pass device and a conductive shunt that electrically connects an emitter region of the thyristor with a node near an upper surface of the substrate. In one example embodiment of the present invention, the conductive shunt is formed in a trench in a substrate and extending from an upper surface of the substrate to an emitter region of a vertical thyristor, with the emitter region being in the substrate and below the upper surface. In one implementation, the thyristor includes a thyristor body and a control port, with an N+ emitter region of the thyristor body being in the substrate and below and upper surface thereof. A pass device is formed adjacent to the thyristor, and the conductive shunt is formed in a trench extending from the N+ emitter region to a source/drain region of the pass device. With this approach, thyristor applications can be implemented having an emitter region in a substrate and not necessarily directly accessible, for example, via an upper surface of the substrate. This approach is also useful, for example, in applications where a cathode-down thyristor is used, such as when it is desirable to form the thyristor control port near a bottom portion of the thyristor, and in high-density circuit applications, such as memory arrays.
Abstract:
A semiconductor device having a thyristor-based memory device exhibits improved stability under adverse operating conditions related to temperature, noise, electrical disturbances and light. In one particular example embodiment of the present invention, a semiconductor device includes a thyristor-based memory device that uses a shunt that effects a leakage current in the thyristor. The thyristor includes a capacitively-coupled control port and anode and cathode end portions. Each of the end portions has an emitter region and an adjacent base region. In one implementation, the current shunt is located between the emitter and base region of one of the end portions of the thyristor and is configured and arranged to shunt low-level current therebetween. In connection with an example embodiment, it has been discovered that shunting current in this manner improves the ability of the device to operate under adverse conditions that would, absent the shunt, result in inadvertent turn on, while keeping the standby current of the memory device to an acceptably low level.
Abstract:
A semiconductor device having a thyristor is manufactured in a manner that reduces or eliminates manufacturing difficulties commonly experienced in the formation of such devices. According to an example embodiment of the present invention, a thyristor is formed having some or all of the body of the thyristor extending above a substrate surface of a semiconductor device. The semiconductor device includes at least one transistor having source/drain regions formed in the substrate prior to the formation of the thyristor. One or more layers of material are deposited on the substrate surface and used to form a portion of a body of the thyristor that includes anode and cathode end portions. Each end portion is formed having a base region and an emitter region, and at least one of the end portions includes a portion that is in the substrate and electrically coupled to the transistor. A control port is formed capacitively coupled to at least one of the base regions.
Abstract:
A semiconductor device may comprise a partially-depleted SOI MOSFET having a floating body region disposed between a source and drain. The floating body region may be driven to receive injected carriers for adjusting its potential during operation of the MOSFET. In a particular case, the MOSFET may comprise another region of semiconductor material in contiguous relationship with a drain/source region of the MOSFET and on a side thereof opposite to the body region. This additional region may be formed with a conductivity of type opposite the drain/source, and may establish an effective bipolar device per the body, the drain/source and the additional region. The geometries and doping thereof may be designed to establish a transport gain of magnitude sufficient to assist the injection of carriers into the floating body region, yet small enough to guard against inter-latching with the MOSFET.
Abstract:
An integrated circuit having memory, including thyristor-based memory cells, is described, where each of the thyristor-based memory cells includes a thyristor-based storage element and an access transistor. Where the thyristor-based storage element includes an anode region and a cathode region, a pair of the thyristor-based memory cells are commonly coupled via a bitline associated with the access transistor or via a reference voltage line coupled to the anode region. Bitline or anode regions are separated from one another by an isolation region. In another configuration, a bitline region has a locally implant-damaged region to inhibit charge transfer between the pair. In yet another configuration, a storage node contact or contacts respectively can extend over or are coupled to a storage node line extending over an isolation region. In this latter configuration, a source/drain region and the cathode region are separated from one another by an isolation region.
Abstract:
A thyristor-based semiconductor device includes a thyristor body that has at least one region in the substrate and a thyristor control port in a trenched region of the device substrate. According to an example embodiment of the present invention, the trench is at least partially filled with a dielectric material and a control port adapted to capacitively couple to the at least one thyristor body region in the substrate. In a more specific implementation, the dielectric material includes deposited dielectric material that is adapted to exhibit resistance to voltage-induced stress that thermally-grown dielectric materials generally exhibit. In another implementation, the dielectric material includes thermally-grown dielectric material, and when used in connection with highly-doped material in the trench, grows faster on the highly-doped material than on a sidewall of the trench that faces the at least on thyristor body region in the substrate. In still another implementation, the dielectric material includes both a thermally-grown dielectric material and a deposited dielectric material. These approaches are particularly useful, for example, in high-density and other applications where thermally-stable dielectric materials are desirable and/or where dielectric material growth at different rates is desirable.
Abstract:
A semiconductor device includes a thyristor body having at least one region in a substrate. According to an example embodiment of the present invention, a trench is in a substrate and adjacent to a thyristor body region in the substrate. The trench is lined with an insulative material and further includes conductive material that is insulated from the thyristor body region in the substrate by the liner material. A conductive thyristor control port is located in the trench and adapted for capacitively coupling to the thyristor body region in the substrate and to control current in the thyristor body by causing an outflow of minority carriers in the thyristor. With this approach, conductive material can be used to fill a portion of the trench while using the trench portion including the conductive material to electrically isolate a portion of the thyristor body in the substrate. This approach is particularly useful, for example, in high-density applications where insulative trenches having high aspect ratios are desired.
Abstract:
A semiconductor device may comprise a partially-depleted SOI MOSFET having a floating body region disposed between a source and drain. The floating body region may be driven to receive injected carriers for adjusting its potential during operation of the MOSFET. In a particular case, the MOSFET may comprise another region of semiconductor material in contiguous relationship with a drain/source region of the MOSFET and on a side thereof opposite to the body region. This additional region may be formed with a conductivity of type opposite the drain/source, and may establish an effective bipolar device per the body, the drain/source and the additional region. The geometries and doping thereof may be designed to establish a transport gain of magnitude sufficient to assist the injection of carriers into the floating body region, yet small enough to guard against inter-latching with the MOSFET.