Abstract:
The present invention provides a carotid blood pressure detection device, comprising: a first sensing unit, a second sensing unit, and a controller connected or coupled to the first sensing unit and the second sensing unit. The first sensing unit is disposed on a subject's neck and adjacent to a first position of the subject's carotid arteries. The second sensing unit is disposed on the subject's neck and adjacent to a second position of the subject's carotid arteries. The controller derives a mean arterial pressure of a section of the subject's carotid arteries that lies between the first position and the second position of the subject's carotid arteries from pulse wave data measured and obtained by the first sensing unit and pulse wave data measured and obtained by the second sensing unit.
Abstract:
A method of fabricating semiconductor devices is disclosed. The method comprises providing a substrate with a plurality of epitaxial layers mounted on the substrate and separating the substrate from the plurality of epitaxial layers while the plurality of epitaxial layers is intact. This preserves the electrical, optical, and mechanical properties of the plurality of epitaxial layers.
Abstract:
The invention discloses a novel compound effective in inactivating viruses and bacteria. The compound, 2-(10-mercaptodecyl)-propanedioic acid or salts thereof, is shown to disrupt, break down or inactivate viruses and bacteria, thus suppressing infection and proliferation thereof in host cells. A method of chemically synthesizing the novel compound is also disclosed.
Abstract:
A method of electrosensing an antigen in a test sample using a sensor is disclosed. The sensor has two electrodes electrically disconnected and physically separated from each other and a layer of antibody immobilized on the surface of at least one of the electrodes. The antibody has specific binding reactivity with the antigen. The method comprises tethering conductivity promotion molecules over and/or distributing between the antibody-populated electrodes for improving electrical conductivity characteristics across the two electrodes, and measuring electrically across the electrodes after the test sample comes into contact with the antibody-populated electrodes. The antibody captures the antigen present in the test sample thereby altering the improved electrical conductivity characteristic across the two electrodes in which an amount representative of the altering providing an indication for electrosensing of the antigen.
Abstract:
A sensor for electrosensing an antigen in a test sample is disclosed. The sensor has two electrodes electrically disconnected and physically separated from each other, and a layer of antibody is immobilized on the surface of at least one of the electrodes. The antibody has specific binding reactivity with the antigen. Conductivity promotion molecules may be tethered over and/or distributed between the antibody-populated electrodes for improving electrical conductivity characteristics across the two electrodes. The antibody captures the antigen present in the test sample mixed in a buffer solution that comes into contact with the antibody-populated electrodes. This alters the electrical conductivity characteristic across the two electrodes in which an amount representative of the altering provides an indication for electrosensing of the antigen.
Abstract:
A sensor system for electrosensing an antigen in a test sample is disclosed. The sensor system has two electrodes electrically disconnected and physically separated from each other, and a layer of antibody is immobilized on the surface of the electrodes. The antibody has specific binding reactivity with the antigen. Conductivity promotion molecules suspended in a buffer solution may be distributed over and/or between the antibody-populated electrodes for improving electrical conductivity characteristics across the two electrodes. The antibody captures the antigen present in the test sample mixed in the buffer solution that comes into contact with the antibody-populated electrodes. This alters the electrical conductivity characteristic across the two electrodes in which an amount representative of the altering provides an indication for electrosensing of the antigen.
Abstract:
A high-precision vortex flow meter includes a blunt body having a predetermined dimension and being arranged inside a fluid channel to serve as a vortex shedder. The vortex flow meter also includes a temperature detecting device for detecting the vortex shedder temperature and a temperature control element for adjusting the vortex shedder temperature. A frequency measuring device is arranged in the downstream section of the blunt body for detecting the vortex shedding frequency. From the measured temperatures of the upstream fluid flow and that of the blunt body, an effective temperature and a temperature ratio are calculated. The kinematic viscosity of the fluid is looked up from database. By using the relationship between the Strouhal number and Reynolds number, the fluid flow rate is calculated. By employing different blunt body temperature, the measurement range of the flow meter can be broadly extended.
Abstract:
A method for detecting heart rhythm irregularities, including the steps of: measuring pulse peaks continuously over a period of time to obtain pulse peak sequence and pulse peak time interval sequence corresponding to the pulse peak sequence; and calculating the absolute value of a difference between a single pulse peak time interval in the pulse peak time interval sequence and an average value of the pulse peak time interval sequence, and determining that an irregular pulse peak (IPP) has occurred if the absolute value is larger than or equal to 15% to 25% of the average value of the pulse peak time interval sequence. A detection device using the method is also provided. This uses a non-invasive approach to detect heart rhythm irregularities such as sick sinus syndrome, irregular pulse peaks, irregular heartbeat, and atrial fibrillation, and can be applied to a sphygmomanometer or a wearable device.
Abstract:
A single-arm micro air-pressure pump device, having an air pump body and a driving unit. The air pump body includes a supporting frame, an air chamber unit coupled to a side of the supporting frame, and a swing arm provided on the air chamber unit. The driving unit is fixed on the supporting frame and has an output shaft. The output shaft is provided with an eccentric shaft and is configured to rotate the eccentric shaft, and the eccentric shaft has an end coupled to the output shaft and an opposite end coupled to the swing arm in order to drive the swing arm into a reciprocating motion between at least a proximal position and a distal position with respect to the air chamber unit. The reciprocating motion pushes a piston unit provided on one end of the swing arm and causes the air output.
Abstract:
Embodiments of the present disclosure set forth a biosensor for detecting a target. One example sensor includes a first electrode. The first electrode includes a first electron conducting molecule and a first probe. The first probe includes a second electron conducting molecule. The first probe is configured to bind to the target of interest in solution. The first and second electron conducting molecules are different.