摘要:
An electrostatic discharge (ESD) protection circuit, methods of fabricating an ESD protection circuit, methods of providing ESD protection, and design structures for an ESD protection circuit. An NFET may be formed in a p-well and a PFET may be formed in an n-well. A butted p-n junction formed between the p-well and n-well results in an NPNP structure that forms an SCR integrated with the NFET and PFET. The NFET, PFET and SCR are configured to collectively protect a pad, such as a power pad, from ESD events. During normal operation, the NFET, PFET, and SCR are biased by an RC-trigger circuit so that the ESD protection circuit is in a high impedance state. During an ESD event while the chip is unpowered, the RC-trigger circuit outputs trigger signals that cause the SCR, NFET, and PFET to enter into conductive states and cooperatively to shunt ESD currents away from the protected pad.
摘要:
A low leakage, low capacitance diode based triggered electrostatic discharge (ESD) silicon controlled rectifiers (SCR), methods of manufacture and design structure are provided. The method includes providing a silicon film on an insulator layer. The method further includes forming isolation regions which extend from an upper side of the silicon layer to the insulator layer. The method further includes forming one or more diodes in the silicon layer, including a p+ region and an n+ region formed in a well bordered by the isolation regions. The isolation regions isolate the one or more diodes in a vertical direction and the insulator layer isolates the one or more diodes from an underlying P or N type substrate, in a horizontal direction.
摘要:
An enhanced turn-on time SCR based electrostatic discharge (ESD) protection circuit includes an integrated JFET, method of use and design structure. The enhanced turn-on time silicon controlled rectifier (SCR) based electrostatic discharge (ESD) protection circuit includes an integrated JFET in series with an NPN base.
摘要:
A low leakage, low capacitance diode based triggered electrostatic discharge (ESD) silicon controlled rectifiers (SCR), methods of manufacture and design structure are provided. The method includes providing a silicon film on an insulator layer. The method further includes forming isolation regions which extend from an upper side of the silicon layer to the insulator layer. The method further includes forming one or more diodes in the silicon layer, including a p+ region and an n+ region formed in a well bordered by the isolation regions. The isolation regions isolate the one or more diodes in a vertical direction and the insulator layer isolates the one or more diodes from an underlying P or N type substrate, in a horizontal direction.
摘要:
An ESD power clamp circuit and method of ESD protection. The ESD power clamp circuit includes: a power clamp device coupled to a resistive/capacitive (RC) network, the RC network including a capacitor as the capacitive element of the RC network and one or more junction field effect transistors (JFETs) configured as variable resistors as the resistive element of the RC network.
摘要:
An enhanced turn-on time SCR based electrostatic discharge (ESD) protection circuit includes an integrated JFET, method of use and design structure. The enhanced turn-on time silicon controlled rectifier (SCR) based electrostatic discharge (ESD) protection circuit includes an integrated JFET in series with an NPN base.
摘要:
An electrostatic discharge (ESD) protection device for an integrated circuit includes a buried layer of a first polarity type formed in a substrate of a second polarity type. A well region of the second polarity type is formed above the buried layer. An FET of the first polarity type is formed within the well region. An inner pair of shallow wells of the first polarity type is disposed adjacent to source and drain diffusion regions of the FET, the inner pair of shallow wells having a depth such that a bottom of the inner pair of shallow wells is above a top of the buried layer. An outer pair of deep wells of the first polarity type extends down to the top of the buried layer such that the outer pair of deep wells and the buried layer define a perimeter of the well region of the second polarity type.
摘要:
An electrostatic discharge (ESD) protection device for an integrated circuit includes a buried layer of a first polarity type formed in a substrate of a second polarity type. A well region of the second polarity type is formed above the buried layer. An FET of the first polarity type is formed within the well region. An inner pair of shallow wells of the first polarity type is disposed adjacent to source and drain diffusion regions of the FET, the inner pair of shallow wells having a depth such that a bottom of the inner pair of shallow wells is above a top of the buried layer. An outer pair of deep wells of the first polarity type extends down to the top of the buried layer such that the outer pair of deep wells and the buried layer define a perimeter of the well region of the second polarity type.
摘要:
A semiconductor circuit for electric overstress (EOS) protection is provided. The semiconductor circuit employs an electrostatic discharge (ESD) protection circuit, which has a resistor-capacitor (RC) time-delay network connected to a discharge capacitor. An electronic component that has voltage snapback property or a diodic behavior is connected to alter the logic state of the gate of the discharge transistor under an EOS event. Particularly, the electronic component is configured to turn on the gate of the discharge capacitor throughout the duration of an electrical overstress (EOS) condition as well as throughout the duration of an ESD event. A design structure may be employed to design or manufacture a semiconductor circuit that provides protection against an EOS condition without time limitation, i.e., without being limited by the time constant of the RC time delay network for EOS events that last longer than 1 microsecond.
摘要:
A system and method of electrostatic discharge (ESD) protection in a logic circuit using either state manipulation or current injection. A first system is disclosed that includes an ESD detection circuit for detecting an ESD event; and an ESD control circuit that can change a state of the logic circuit from a normal mode to an ESD mode in response to a signal received from the ESD detection circuit. A second system is disclosed that includes an attenuator circuit coupled to a chip pad; and a switch for diverting current from the attenuator circuit to an internal node of the logic circuit during an ESD event to reduce a voltage at the chip pad.