摘要:
A semiconductor circuit for electric overstress (EOS) protection is provided. The semiconductor circuit employs an electrostatic discharge (ESD) protection circuit, which has a resistor-capacitor (RC) time-delay network connected to a discharge capacitor. An electronic component that has voltage snapback property or a diodic behavior is connected to alter the logic state of the gate of the discharge transistor under an EOS event. Particularly, the electronic component is configured to turn on the gate of the discharge capacitor throughout the duration of an electrical overstress (EOS) condition as well as throughout the duration of an ESD event. A design structure may be employed to design or manufacture a semiconductor circuit that provides protection against an EOS condition without time limitation, i.e., without being limited by the time constant of the RC time delay network for EOS events that last longer than 1 microsecond.
摘要:
An electrostatic discharge protection device, methods of fabricating an electrostatic discharge protection device, and design structures for an electrostatic discharge protection device. A drain of a first field-effect transistor and a diffusion resistor of higher electrical resistance may be formed as different portions of a doped region. The diffusion resistor, which is directly coupled with the drain of the first field-effect transistor, may be defined using an isolation region of dielectric material disposed in the doped region and selective silicide formation. The electrostatic discharge protection device may also include a second field-effect transistor having a drain as a portion the doped region that is directly coupled with the diffusion resistor and indirectly coupled by the diffusion resistor with the drain of the first field-effect transistor.
摘要:
An electrostatic discharge (ESD) protection circuit, methods of fabricating an ESD protection circuit, methods of providing ESD protection, and design structures for an ESD protection circuit. An NFET may be formed in a p-well and a PFET may be formed in an n-well. A butted p-n junction formed between the p-well and n-well results in an NPNP structure that forms an SCR integrated with the NFET and PFET. The NFET, PFET and SCR are configured to collectively protect a pad, such as a power pad, from ESD events. During normal operation, the NFET, PFET, and SCR are biased by an RC-trigger circuit so that the ESD protection circuit is in a high impedance state. During an ESD event while the chip is unpowered, the RC-trigger circuit outputs trigger signals that cause the SCR, NFET, and PFET to enter into conductive states and cooperatively to shunt ESD currents away from the protected pad.
摘要:
A robust ESD protection circuit, method and design structure for tolerant and failsafe designs are disclosed. A circuit includes a middle junction control circuit that turns off a top NFET of a stacked NFET electrostatic discharge (ESD) protection circuit during an ESD event.
摘要:
A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.
摘要:
An electrostatic discharge protection device, methods of fabricating an electrostatic discharge protection device, and design structures for an electrostatic discharge protection device. A drain of a first field-effect transistor and a diffusion resistor of higher electrical resistance may be formed as different portions of a doped region. The diffusion resistor, which is directly coupled with the drain of the first field-effect transistor, may be defined using an isolation region of dielectric material disposed in the doped region and selective silicide formation. The electrostatic discharge protection device may also include a second field-effect transistor having a drain as a portion the doped region that is directly coupled with the diffusion resistor and indirectly coupled by the diffusion resistor with the drain of the first field-effect transistor.
摘要:
A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.
摘要:
An electrostatic discharge (ESD) protection device for an integrated circuit includes a buried layer of a first polarity type formed in a substrate of a second polarity type. A well region of the second polarity type is formed above the buried layer. An FET of the first polarity type is formed within the well region. An inner pair of shallow wells of the first polarity type is disposed adjacent to source and drain diffusion regions of the FET, the inner pair of shallow wells having a depth such that a bottom of the inner pair of shallow wells is above a top of the buried layer. An outer pair of deep wells of the first polarity type extends down to the top of the buried layer such that the outer pair of deep wells and the buried layer define a perimeter of the well region of the second polarity type.
摘要:
An electrostatic discharge (ESD) protection device for an integrated circuit includes a buried layer of a first polarity type formed in a substrate of a second polarity type. A well region of the second polarity type is formed above the buried layer. An FET of the first polarity type is formed within the well region. An inner pair of shallow wells of the first polarity type is disposed adjacent to source and drain diffusion regions of the FET, the inner pair of shallow wells having a depth such that a bottom of the inner pair of shallow wells is above a top of the buried layer. An outer pair of deep wells of the first polarity type extends down to the top of the buried layer such that the outer pair of deep wells and the buried layer define a perimeter of the well region of the second polarity type.
摘要:
A semiconductor circuit for electric overstress (EOS) protection is provided. The semiconductor circuit employs an electrostatic discharge (ESD) protection circuit, which has a resistor-capacitor (RC) time-delay network connected to a discharge capacitor. An electronic component that has voltage snapback property or a diodic behavior is connected to alter the logic state of the gate of the discharge transistor under an EOS event. Particularly, the electronic component is configured to turn on the gate of the discharge capacitor throughout the duration of an electrical overstress (EOS) condition as well as throughout the duration of an ESD event. A design structure may be employed to design or manufacture a semiconductor circuit that provides protection against an EOS condition without time limitation, i.e., without being limited by the time constant of the RC time delay network for EOS events that last longer than 1 microsecond.