Abstract:
Methods for making a recycled or refurbished electrode material for an energy-storage device are provided. One example method comprises harvesting a lithium-deficient electrode material from a recycling or waste stream, and replenishing at least some lithium in the lithium-deficient electrode material. A second example method comprises breeching an enclosure of a cell of an energy storage device, replenishing at least some lithium in a lithium-deficient electrode material of the cell, and sealing the enclosure of the cell.
Abstract:
Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.
Abstract:
Embodiments are disclosed that relate to devices for discharging batteries. For example, one disclosed embodiment provides a battery discharge device including a positive battery contact for forming an electrical contact with a positive battery terminal of a battery, a negative battery contact for forming an electrical contact with a negative battery terminal of the battery, and a battery discharge indicator including a resistive heating material in electrical communication with the positive battery contact and with the negative battery contact, and also including a reversible thermochromic indicator in thermal communication with the resistive heating material.
Abstract:
A method of refurbishing a lithium-containing energy storage and/or conversion device is disclosed, wherein the energy storage and/or conversion device includes electrodes and an electrolyte, and wherein the method includes substantially removing the electrolyte from the energy storage and/or conversion device, substantially removing waste products from surfaces of the electrodes, and adding a new quantity of electrolyte to the energy storage and/or conversion device.
Abstract:
Examples are disclosed herein that relate to identifying batteries of different chemistries such as in a battery recycling stream. One example provides a method for differentiating between batteries of different chemistries, the method comprising determining an expected mass of a sample of one or more batteries based upon an expected chemistry of the sample of one or more batteries, weighing the sample of one or more batteries to determine a sample mass, comparing the sample mass to the expected mass, and if the sample mass does not match the expected mass within a threshold range, then determining that the sample contains one or more batteries of a different chemistry than the expected chemistry.
Abstract:
Methods for making a recycled or refurbished electrode material for an energy-storage device are provided. One example method comprises harvesting a lithium-deficient electrode material from a recycling or waste stream, and replenishing at least some lithium in the lithium-deficient electrode material. A second example method comprises breeching an enclosure of a cell of an energy storage device, replenishing at least some lithium in a lithium-deficient electrode material of the cell, and sealing the enclosure of the cell.
Abstract:
A method of recycling a lithium-containing energy storage device including an electrolyte is provided. The method includes placing the storage device in an extraction vessel, sealing the extraction vessel, adding a fluid containing CO2 as a primary component to the extraction vessel under such conditions that the CO2 is in a supercritical phase, dissolving the electrolyte in the fluid, transferring the fluid to a recovery vessel and recovering the electrolyte from the fluid in the recovery vessel. Methods of refurbishing lithium-containing energy storage and conversion devices are also disclosed.
Abstract:
Embodiments related to processing spent energy storage and conversion devices for recycling are disclosed. For example, one disclosed embodiment provides a method comprising obtaining a spent energy storage and conversion device that includes packaging containing one or more cells, opening the packaging of the spent energy storage and conversion device to expose at least a portion of the one or more cells of the spent energy storage and conversion device, discharging the one or more cells of the spent energy storage and conversion device, separating the one or more cells from the packaging to yield one or more individual cells, disassembling each cell in the one or more individual cells, where disassembling each cell comprises cutting the container of the cell, separating the container from the plurality of cell components; and separating the positive and negative electrode materials.