Abstract:
Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica: alumina ratio, and are prepared from microemulsions containing surfactants.
Abstract:
Distillate or hydrotreated distillate effluent is separated into an aromatics rich permeate and an aromatics lean retentate by use of a permselective membrane with the aromatic rich permeate being sent to a hydrotreater, thereby increasing the quantity of reduced aromatics content product.
Abstract:
Hydrocarbon solvents used or the dewaxing and/or deasphalting of oils can be recovered by the selective permeation of said solvents through an interfacially polymerized membrane under reverse osmosis conditions.
Abstract:
Raffinate yield from solvent extraction is improved when the extract phase recovered from the solvent extraction process is subjected to a membrane separation step wherein a saturates/1-ring aromatics rich retentate is produced and a 2+ ring aromatics rich permeate are produced and the saturates/1-ring aromatic rich retentate phase is recycled to the solvent extraction process.
Abstract:
Non-normal, branched paraffins (isoparaffins) are separated from hydrocarbon feeds comprising mixtures of isoparaffins and normal paraffins by the procedure involving the steps of contacting the hydrocarbon feed with one face of a non-selective, microporous partition barrier membrane while simultaneously contacting the opposite face of said membrane, preferably in countercurrent flow, with a polar solvent. The isoparaffins in the feed selectively permeate across the porous partition barrier membrane in response to the polar solvent to the solvent side of the membrane whereby a permeate enriched in isoparaffins and a retentate of decreased isoparaffin content as compared to the feed are obtained.
Abstract:
Naphthenic hydrocarbons are separated from aliphatic rich hydrocarbon feeds comprising mixtures of naphthenes with paraffinic hydrocarbons by a membrane extraction process whereby the hydrocarbon feed is contacted with one face of a porous, non-selective partition barrier membrane while simultaneously contacting the other side of said membrane with a polar solvent such as ethylenediamine. The naphthenic hydrocarbon preferentially migrates through the porous membrane partition barrier in response to the polar solvent present on the permeate side of the barrier.
Abstract:
Disclosed herein is a process for dehydrogenating a saturated cyclic hydrocarbon and/or 5-membered ring compound with a dehydrogenation catalyst. The dehydrogenation catalyst comprises: (i) 0.05 wt % to 5 wt % of a metal selected from Group 14 of the Periodic Table of Elements; and (ii) 0.1 wt % to 10 wt % of a metal selected from Groups 6 to 10 of the Periodic Table of Elements. The process is conducted under dehydrogenation conditions effective to dehydrogenate at least a portion saturated cyclic hydrocarbon and/or 5-membered ring compound.
Abstract:
In a process for producing cyclohexylbenzene, benzene is contacted with hydrogen under hydroalkylation conditions effective to form a first effluent stream comprising cyclohexylbenzene, cyclohexane, methylcyclopentane, and unreacted benzene. At least a portion of the first effluent stream is contacted with a dehydrogenation catalyst under dehydrogenation conditions to convert at least a portion of the cyclohexane to benzene thereby forming a second effluent stream. The amount of methylcyclopentane in the second effluent stream is different by no more than 65% of the total amount of the portion of the first effluent stream, said amounts being on a weight basis. A methylcyclopentane-containing stream is removed from either the first or the second effluent stream and at least a portion of the second effluent stream containing benzene is recycled to the hydroalkylation step.
Abstract:
The invention relates to hydroalkylation processes. In the processes, a hydrogen stream comprising hydrogen and an impurity is treated to reduce the amount of the impurity in the hydrogen stream. The hydrogen is then hydroalkylated with benzene to form at least some cyclohexylbenzene. The processes also relate to treating a benzene stream comprising benzene and an impurity with an adsorbent to reduce the amount of the impurity in the benzene stream. The hydroalkylation processes described herein may be used as part of a process to make phenol.
Abstract:
In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.