Abstract:
A system status control method and a portable terminal are described. The portable terminal includes a first system with a first interface and a second system with a second interface, and the first system and the second system are joined or separated through the first interface and the second interface. The method includes when the first system and the second system enter a joined-up status from a separated status, the first system and the second system exchanging respective system status information thereof; and the first system and the second system control the system status according to the system status information and based on a preset policy. When a master system and a slave system are combined or separated, automatic switch control may be performed on the system status according to a usage requirement of a user and based on the preset policy.
Abstract:
The present invention provides a method of establishing a hard disk physical partition. First of all, it selects a sector in which the head of the hard disk physical partition is located, and establishes a user available partition of the hard disk within the range of the hard disk physical volume from the sector, the other portion of the hard disk becomes a protected partition of the hard disk, finally constitutes one hard disk physical partition. After entering into the hard disk physical partition, only the user available partition can be accessed, the protected partition is invisible to the user. It can establish the different hard disk physical partition in the different position of the hard disk through selecting the sector where the head of the hard disk is located. The present method can realize that protecting the various users' data from each other in physical on the premise of sharing the same hard disk, thus establishes fully separate data storage space from physical level, causes the user to have a proprietary run environment.
Abstract:
A system status control method and a portable terminal are described. The portable terminal includes a first system with a first interface and a second system with a second interface, and the first system and the second system are joined or separated through the first interface and the second interface. The method includes when the first system and the second system enter a joined-up status from a separated status, the first system and the second system exchanging respective system status information thereof; and the first system and the second system control the system status according to the system status information and based on a preset policy. When a master system and a slave system are combined or separated, automatic switch control may be performed on the system status according to a usage requirement of a user and based on the preset policy.
Abstract:
An apparatus includes an adjustable oscillator circuit configured to generate an output signal having a frequency that varies responsive to a frequency control signal and a frequency reference generator circuit configured to produce a frequency reference signal. The apparatus further includes a calibration circuit configured to determine a relationship of the output signal to the frequency reference signal and to enable and disable the frequency reference generator circuit based on the determined relationship.
Abstract:
A clock circuit includes a phase-lock loop for generating an output clock signal based on a data signal and a harmonic frequency detector for detecting whether the frequency of the output clock signal is a harmonic frequency of a frequency of a reference clock signal. The harmonic frequency detector includes a counter for generating a first divided clock signal by dividing the frequency of the output clock signal by a first divisor. Additionally, the harmonic frequency detector includes a counter for generating a second divided clock signal by dividing the frequency of the reference clock signal by a second divisor. The harmonic frequency detector also includes a frequency comparator for generating an output indicating whether the frequency of the output clock signal is a harmonic frequency of the frequency of the reference clock signal based on the first divided clock signal and the second divided clock signal.
Abstract:
An electrostatic discharge (ESD) protection circuit configured completely inside one of a power pad and an I/O pad of an electronic circuit, the ESD protection circuit comprising an electrostatic discharge (ESD) circuit that, when activated, discharges an ESD from a first voltage bus to a second voltage bus. The second voltage bus is at a lower electrical potential than the first voltage bus. An ESD discharge control circuit in electrical connection with the ESD discharge circuit that controls the activation of the ESD discharge circuit and including an NMOS transistor and an electrical node. The NMOS transistor regulating a rate of voltage decay of the electrical node from a predetermined high voltage level to a lower voltage level, the regulation of the rate of voltage decay of the electrical node is non-linear. The activation of the ESD discharge circuit determined by the rate of voltage decay of the electrical node.
Abstract:
An apparatus is provided for detecting the loss of an input clock signal for a phase-locked loop (PLL). The apparatus includes a time delay circuit, a first frequency divider and a digital logic circuit. The time delay circuit receives the input clock signal and outputs a first time-delayed clock signal. The first frequency divider receives an input signal from an internal clock of the PLL and outputs a clock signal having the same frequency or a lower frequency than that of the time-delayed clock signal. The digital logic circuit that receives the first frequency divider output signal and the first time-delayed clock signal and outputs a signal indicating the loss of the input clock signal if there is no first time-delayed clock signal for a cycle of the first frequency divider output signal.
Abstract:
The present invention provides a method of establishing a hard disk physical partition. First of all, it selects a sector in which the head of the hard disk physical partition is located, and establishes a user available partition of the hard disk within the range of the hard disk physical volume from the sector, the other portion of the hard disk becomes a protected partition of the hard disk, finally constitutes one hard disk physical partition. After entering into the hard disk physical partition, only the user available partition can be accessed, the protected partition is invisible to the user. It can establish the different hard disk physical partition in the different position of the hard disk through selecting the sector where the head of the hard disk is located. The present method can realize that protecting the various users' data from each other in physical on the premise of sharing the same hard disk, thus establishes fully separate data storage space from physical level, causes the user to have a proprietary run environment.
Abstract:
A computer and a method for controlling an operating state of a device thereof are disclosed. The method comprises: detecting that a display portion and a host portion of the computer are in a state of being disconnected from each other; and generating a state event or a control instruction corresponding to the disconnected state for switching the device to an inactive state. With the present invention, when the state of a computer changes, e.g., when a display portion and a host portion of a portable computer are separated, an operating system can control a device to switch its operating state, e.g., deactivate the device, based on a generated state event. In this way, it is possible to avoid unnecessary power consumption of the entire computer due to the active state of the device, and any potential security risk can be eliminated.