Abstract:
A clock circuit includes a phase-lock loop for generating an output clock signal based on a data signal and a harmonic frequency detector for detecting whether the frequency of the output clock signal is a harmonic frequency of a frequency of a reference clock signal. The harmonic frequency detector includes a counter for generating a first divided clock signal by dividing the frequency of the output clock signal by a first divisor. Additionally, the harmonic frequency detector includes a counter for generating a second divided clock signal by dividing the frequency of the reference clock signal by a second divisor. The harmonic frequency detector also includes a frequency comparator for generating an output indicating whether the frequency of the output clock signal is a harmonic frequency of the frequency of the reference clock signal based on the first divided clock signal and the second divided clock signal.
Abstract:
A clock signal generator includes a phase-lock loop for generating an imaging clock signal having a frequency based on a reference clock signal. The imaging clock signal generator also includes a modulation circuit for determining a number of pixels in a horizontal line of an image to be generated based on the imaging clock signal. The modulation circuit generates a modulation signal based on the determined number of pixels and the clock signal generator spreads the frequency of the imaging clock signal across a frequency range based on the modulation signal. In this way, the clock signal generator reduces electromagnetic interference in the imaging clock signal. In further embodiments, the clock signal generator generates an adjustment signal for adjusting the frequency range based on the frequency of the reference clock signal and the frequency of the imaging clock signal.
Abstract:
The present invention provides for a voltage-controlled crystal oscillator (VCXO) which, other than the crystal itself, is full integrated. The VCXO has a pre-amplifier block, a gain stage, a first MOS transistor, a first capacitor, a second MOS transistor, and a one second capacitor. The pre-amplifier block receives an input tuning voltage and the gain stage is connected across the terminals of the oscillating crystal. The first MOS transistor and first capacitor are connected between one of the terminals of the oscillating crystal and a reference voltage. The second MOS transistor and the second capacitor are connected between the second crystal terminal and the reference voltage. The gates of both MOS transistors are connected to the output node of the pre-amplifier block. The first and second MOS transistors connect the first and second capacitors to the first and second terminals of the gain stage for a portion of the time responsive to the input tuning voltage. Thus the oscillating crystal has a load capacitance, which varies according to the input tuning voltage, so that the frequency of the VCXO varies according to the input tuning voltage.
Abstract:
A voltage-controlled crystal oscillator circuit with an extended range is presented. The circuit has a crystal oscillator circuit, a phase-locked loop (PLL), and a look-up table. The crystal oscillator circuit generates a signal having a frequency f.sub.ref at its output node responsive to a voltage at its input terminal. The PLL has its input node connected to the crystal oscillator output node and generates a signal at the PLL output node having a frequency f.sub.o. A first divider circuit of the PLL divides the f.sub.ref frequency by a first variable integer M and a second PLL divider circuit divides the f.sub.o frequency by a second variable integer N. The look-up table, which has comparators connected to the input terminal, a counter connected to the comparators and a memory responsive to the counter and storing M and N values, varies M and N responsive to the input terminal voltage so that the voltage-controlled crystal oscillator circuit has an increased frequency range.