Abstract:
A frequency converter includes a first direct digital synthesizer that receives a signal having a predetermined frequency f_master as a clock signal and further an internal frequency setting signal, and outputs an internal signal having a frequency based on the internal frequency setting signal, and a second direct digital synthesizer that receives the internal signal as a clock signal, and further an output frequency setting signal, and outputs an output signal having a frequency f_slave (=f_master−Δ) based on the output frequency setting signal. A difference between the predetermined frequency f_master and the frequency of the internal signal is larger than a difference between the predetermined frequency f_master and the frequency f_slave of the output signal.
Abstract:
A frequency resolution for measuring transmission characteristics of a device under test is increased. With a measuring device including a first terahertz light generator that generates incident light, a second terahertz light generator that generates reference light having an optical frequency f1−f2−fIF different from an optical frequency f1−f2 of the incident light by a constant difference frequency fIF, a terahertz light detector which outputs an light detection signal having the difference frequency fIF based on response light obtained by making the incident light incident to an optical fiber and the reference light, and a network analyzer that receives the light detection signal, thereby measuring characteristics of the optical fiber, a spectrum of the incident light (terahertz light) incident to the optical fiber includes the carrier frequency (f1−f2), but does not include sideband frequencies (f1−f2±fIF). It is thus possible to reduce the effective spectrum width of the incident light. As a result, the frequency resolution increases in the measurement of the transmission characteristics of the optical fiber.
Abstract translation:用于测量被测设备的传输特性的频率分辨率增加。 利用包括产生入射光的第一太赫兹光发生器的测量装置,产生参考光的第二太赫兹光发生器,该参考光具有光学频率f 1 -f 2 -f 2, 与入射光的光学频率f 1 -f 2 2 不同于恒定差分频率f IF IF的“SUB”IF SUB> 基于通过使入射到光纤的入射光和参考光获得的响应光输出具有差频f IF IF的光检测信号的太赫兹光检测器,以及接收 光检测信号,由此测量光纤的特性,入射到光纤的入射光(太赫兹光)的光谱包括载波频率(f 1 -f 2/2),但不包括 边带频率(f 1 1 -f 2 2 + f IF IF)。 因此可以降低入射光的有效光谱宽度。 结果,在光纤的传输特性的测量中频率分辨率增加。
Abstract:
A device for measuring τPMD includes a polarization controller (12) that allows first (second) incident light, in a synthetic incident light to an object to be measured (30), to be in line with a p-polarization (s-polarization) axis in a polarization separator (16). The phase shift equivalent value (optical angle frequency differentiation) and amplitude equivalent value (square value) of a first (second) incident light component in an output from the polarization separator (16) measured by a first (second) measuring unit (20a, 20b) are respectively the phase shift equivalent value and amplitude equivalent value of a first column T11, T21 (second column T12, T22) when the transfer function matrix of the object (30) is a 2×2 matrix to thereby allow a control unit (2) to determine the polarization mode dispersion τPMD of the object (30).
Abstract:
According to the present invention, an electromagnetic wave measurement device includes an electromagnetic wave output device, an electromagnetic wave detector, a relative position changing unit, a delay period recording unit, a phase deriving unit, a delay-corrected phase deriving unit, a sinogram deriving unit, and an image deriving unit. The electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 THz and equal to or less than 100 THz toward a device under test and a container storing at least a part of the device under test.
Abstract:
According to the present invention, the CT is carried out based on parameters other than the absorption rate. An electromagnetic wave measurement device includes an electromagnetic wave output device 2 which outputs an electromagnetic wave at a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test 1, an electromagnetic wave detector 4 which detects the electromagnetic wave which has transmitted through the device under test 1, a relative position changing unit 6 which changes a relative position of an intersection 100 at which an optical path of the electromagnetic wave transmitting through the device under test 1 and the device under test 1 intersect with respect to the device under test 1, a phase deriving unit 12 which derives, based on a detected result by the electromagnetic wave detector 4, a phase in the frequency domain of the electromagnetic wave which has transmitted through the device under test 1, a sinogram deriving unit 16 which derives a sinogram based on a derived result by the phase deriving unit 12, and a cross sectional image deriving unit 18 that derives, based on the sinogram, an image of a cross section of the device under test 1 including a trajectory of the intersection 100.
Abstract:
According to the present inventions, a phase control device for laser light pulse includes a laser, a reference comparator, a measurement comparator, a phase difference detector and a loop filter. The laser outputs a laser light pulse. The reference comparator compares a voltage of a reference electric signal having a predetermined frequency and a predetermined voltage with each other, thereby outputting a result thereof. The measurement comparator compares a voltage based on a light intensity of the laser light pulse and a voltage of a measurement electric signal having the predetermined frequency, with a voltage of a phase control signal, thereby outputting a result thereof. The phase difference detector detects a phase difference between the output from the reference comparator and the output from the measurement comparator. The loop filter removes a high frequency component of an output from the phase difference detector. Further, the voltage of the phase control signal is different from the predetermined voltage. Furthermore, the laser changes the phase of the laser light pulse according to the output from the loop filter.
Abstract:
According to the present invention, an electromagnetic wave measurement device includes an electromagnetic wave output device, an electromagnetic wave detector, a relative position changing unit, a delay period recording unit, a phase deriving unit, a delay-corrected phase deriving unit, a sinogram deriving unit, and an image deriving unit. The electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test and a container storing at least a part of the device under test. The electromagnetic wave detector detects the electromagnetic wave which has transmitted through the device under test. The relative position changing unit changes a relative position of an intersection at which an optical path of the electromagnetic wave transmitting through the device under test and the device under test intersect with respect to the device under test. The delay period recording unit records a delay period of the electromagnetic wave caused by a transmission of the electromagnetic wave through the container. The phase deriving unit that derives, based on a detected result by the electromagnetic wave detector, a phase in the frequency domain of the electromagnetic wave which has transmitted through the device under test. The delay-corrected phase deriving unit that derives a delay-corrected phase obtained by subtracting an integral of the delay period with respect to the frequency from the phase. The sinogram deriving unit that derives a sinogram based on a derived result by the delay-corrected phase deriving unit. The image deriving unit derives, based on the sinogram, an image of a cross section of the device under test including the intersection.
Abstract:
According to the electromagnetic wave measurement device of the present invention, an electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test. An electromagnetic wave detector detects the electromagnetic wave which has transmitted through the device under test. A relative position changing unit changes a relative position of an intersection across which an optical path of the electromagnetic wave transmitting through the device under test and the device under test intersect with respect to the device under test. A characteristic value deriving unit derives a characteristic value of the electromagnetic wave based on a detection result of the electromagnetic wave detector while the characteristic value is associated with an assumed relative position which is the relative position if it is assumed that the electromagnetic wave is not refracted by the device under test. A first association correction unit changes the assumed relative position to an actual relative position, which is the relative position if the refraction of the electromagnetic wave by the device under test is considered, thereby associating the result derived by the characteristic value deriving unit with the actual relative position. A corrected characteristic value deriving unit that derives the characteristic value associated with a predetermined relative position based on an output from the first association correction unit.
Abstract:
According to the present invention, the CT is carried out based on parameters other than the absorption rate. An electromagnetic wave measurement device includes an electromagnetic wave output device 2 which outputs an electromagnetic wave at a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test 1, an electromagnetic wave detector 4 which detects the electromagnetic wave which has transmitted through the device under test 1, a relative position changing unit 6 which changes a relative position of an intersection 100 at which an optical path of the electromagnetic wave transmitting through the device under test 1 and the device under test 1 intersect with respect to the device under test 1, a phase deriving unit 12 which derives, based on a detected result by the electromagnetic wave detector 4, a phase in the frequency domain of the electromagnetic wave which has transmitted through the device under test 1, a sinogram deriving unit 16 which derives a sinogram based on a derived result by the phase deriving unit 12, and a cross sectional image deriving unit 18 that derives, based on the sinogram, an image of a cross section of the device under test 1 including a trajectory of the intersection 100.
Abstract:
An object of the present invention is to enable a change in a frequency for which an electric signal based on an optical signal is measured by a spectrum analyzer. An optical measurement device 1 includes a photoconductive switch 18 which receives predetermined pulse light from a first laser light source 11, and outputs terahertz light L1 having the same repetition frequency frep1 as the repetition frequency of the predetermined pulse light, a photoconductive switch 21 which receives the terahertz light L1 and a sampling light pulse L2, and outputs signal corresponding to a power of the terahertz light L1 at a time point when the sampling light pulse L2 is received, an RF spectrum analyzer 26 which measures a magnitude of the signal corresponding to a measured frequency which changes over time, an optical coupler 32 which outputs a simultaneous light pulse when the predetermined pulse light and the sampling light pulse L2 are simultaneously input, a photo detector 36 which converts the simultaneous light pulse into an electric signal as a trigger signal EXT, and an optical delay circuit 34 which delays the trigger signal EXT.