Abstract:
A method of manufacturing different-voltage devices mainly comprises forming at least one high-voltage well in high-voltage device regions, at least one N-well in low-voltage device regions, at least one P-well in low-voltage device regions, source/drain wells in high-voltage device regions, and isolation wells in isolation regions in a p-type substrate. The breakdown voltage is adjusted by modulating the ion doping profile. Furthermore, parameters of implanting conductive ions are adjusted for implanting conductive ions into both high-voltage device regions and low-voltage device regions. The isolation wells formed in isolation regions between devices are for separating device formed over high-voltage device regions and device formed over low-voltage device regions. The thickness of a HV gate oxide layer is thicker than the thickness of an LV gate oxide layer for modulating threshold voltages of high-voltage devices and low-voltage devices.
Abstract:
An electrostatic discharge (ESD) device has a parasitic SCR structure and a controllable trigger voltage. The controllable trigger voltage of the ESD device is achieved by modulating a distance between an edge of a lightly doped well and an edge of a heavily doped region located at two ends of the lightly doped well. Since the distance and the trigger voltage are linearly proportional, the trigger voltage can be set to a specific value from a minimum value to a maximum value.
Abstract:
A method of manufacturing different-voltage devices mainly comprises forming at least one high-voltage well in high-voltage device regions, at least one N-well in low-voltage device regions, at least one P-well in low-voltage device regions, source/drain wells in high-voltage device regions, and isolation wells in isolation regions in a p-type substrate. The breakdown voltage is adjusted by modulating the ion doping profile. Furthermore, parameters of implanting conductive ions are adjusted for implanting conductive ions into both high-voltage device regions and low-voltage device regions. The isolation wells formed in isolation regions between devices are for separating device formed over high-voltage device regions and device formed over low-voltage device regions. The thickness of a HV gate oxide layer is thicker than the thickness of an LV gate oxide layer for modulating threshold voltages of high-voltage devices and low-voltage devices.
Abstract:
A high voltage LDMOS transistor according to the present invention includes a P-field and divided P-fields in an extended drain region of a N-well. The P-field and divided P-fields form junction-fields in the N-well, in which a drift region is fully depleted before breakdown occurs. Therefore, a higher breakdown voltage is achieved and a higher doping density of the N-well is allowed. Higher doping density can effectively reduce the on-resistance of the LDMOS transistor. Furthermore, the N-well generated beneath a source diffusion region provides a low-impedance path for a source region, which restrict the transistor current flow in between a drain region and a source region.
Abstract:
A high voltage LDMOS transistor according to the present invention includes a P-field and divided P-fields in an extended drain region of a N-well. The P-field and divided P-fields form junction-fields in the N-well, in which a drift region is fully depleted before breakdown occurs. Therefore, a higher breakdown voltage is achieved and a higher doping density of the N-well is allowed. Higher doping density can effectively reduce the on-resistance of the LDMOS transistor. Furthermore, the N-well generated beneath a source diffusion region provides a low-impedance path for a source region, which restrict the transistor current flow in between a drain region and a source region.
Abstract:
A high voltage LDMOS transistor according to the present invention includes P-field blocks in the extended drain region of a N-well. The P-field blocks form the junction-fields in the N-well for equalizing the capacitance of parasitic capacitors between the drain region and the source region and fully deplete the drift region before breakdown occurs. A higher breakdown voltage is therefore achieved and the N-well having a higher doping density is thus allowed. The higher doping density reduces the on-resistance of the transistor. Furthermore, the portion of the N-well generated beneath the source diffusion region produces a low-impedance path for the source region, which restricts the transistor current flow in between the drain region and the source region.
Abstract:
A MOSFET device with an isolation structure for a monolithic integration is provided. A P-type MOSFET includes a first N-well disposed in a P-type substrate, a first P-type region disposed in the first N-well, a P+ drain region disposed in the first P-type region, a first source electrode formed with a P+ source region and an N+ contact region. The first N-well surrounds the P+ source region and the N+ contact region. An N-type MOSFET includes a second N-well disposed in a P-type substrate, a second P-type region disposed in the second N-well, an N+drain region disposed in the second N-well, a second source electrode formed with an N+ source region and a P+ contact region. The second P-type region surrounds the N+ source region and the P+ contact region. A plurality of separated P-type regions is disposed in the P-type substrate to provide isolation for transistors.
Abstract:
An electrostatic discharge (ESD) device has a parasitic SCR structure and a controllable trigger voltage. The controllable trigger voltage of the ESD device is achieved by modulating a distance between an edge of a lightly doped well and an edge of a heavily doped region located at two ends of the lightly doped well. Since the distance and the trigger voltage are linearly proportional, the trigger voltage can be set to a specific value from a minimum value to a maximum value.
Abstract:
A method of manufacturing different-voltage devices mainly comprises forming at least one high-voltage well in high-voltage device regions, at least one N-well in low-voltage device regions, at least one P-well in low-voltage device regions, source/drain wells in high-voltage device regions, and isolation wells in isolation regions in a p-type substrate. The breakdown voltage is adjusted by modulating the ion doping profile. Furthermore, parameters of implanting conductive ions are adjusted for implanting conductive ions into both high-voltage device regions and low-voltage device regions. The isolation wells formed in isolation regions between devices are for separating device formed over high-voltage device regions and device formed over low-voltage device regions. The thickness of a HV gate oxide layer is thicker than the thickness of an LV gate oxide layer for modulating threshold voltages of high-voltage devices and low-voltage devices.
Abstract:
An electrostatic discharge (ESD) device with latch-up immunity is provided. The ESD device has an equivalent SCR structure when a supply voltage is not applied thereto and has an equivalent PN diode structure when the supply voltage is applied thereto, thus freeing the ESD device from the latch-up phenomenon.