Abstract:
An electrostatic discharge (ESD) device with a parasitic silicon controlled rectifier (SCR) structure and controllable holding current is provided. A first distance is kept between a first N+ doped region and a first P+ doped region, and a second distance is kept between a second P+ doped region and a third N+ doped region. In addition, the holding current of the ESD device can be set to a specific value by modulating the first distance and the second distance. The holding current is in inverse proportion to the first distance and the second distance.
Abstract:
An electrostatic discharge (ESD) protection device with adjustable single-trigger or multi-trigger voltage is provided. The semiconductor structure has multi-stage protection semiconductor circuit finction and adjustable discharge capacity. The single-trigger or multi-trigger semiconductor structure may be fabricated by using the conventional semiconductor process, and can be applied to IC semiconductor design and to effectively protect the important semiconductor devices and to prevent the semiconductor devices from ESD damage. In particular, the present invention can meet the requirements of high power semiconductor device and has better protection function compared to conventional ESD protection circuit. In the present invention, a plurality of N-wells or P-wells connected in parallel are used to adjust the discharge capacity of various wells in the P-substrate so as to improve the ESD protection capability and meet different power standards.
Abstract:
The isolated high-voltage LDMOS transistor according to the present invention includes a split N-well and P-well in the extended drain region. The P-well is split in the extended drain region of the N-well to form a split junction-field in the N-well. The split N-well and P-well deplete the drift region, which shifts the electric field maximum into the bulk of the N-well. This achieves a higher breakdown voltage and allows the N-well to have a higher doping density. Furthermore, the LDMOS transistor according to the present invention includes a N-well embedded beneath the source diffusion region. This creates a low-impedance path for the source region, which restricts the transistor current flow between the drain region and the source region.
Abstract:
A device includes an active region and a coupling capacitor. The capacitor includes a first floating gate as an upper capacitor plate of the coupling capacitor, and a doped semiconductor region as a lower capacitor plate of the coupling capacitor. The doped semiconductor region includes a surface portion at a surface of the active region, and a sidewall portion lower than a bottom surface of the surface portion. The sidewall portion is on a sidewall of the active region. A capacitor insulator is disposed between the upper capacitor plate and the lower capacitor plate. The capacitor insulator includes an upper portion, and a sidewall portion lower than a bottom surface of the upper portion.
Abstract:
A method of manufacturing different-voltage devices mainly comprises forming at least one high-voltage well in high-voltage device regions, at least one N-well in low-voltage device regions, at least one P-well in low-voltage device regions, source/drain wells in high-voltage device regions, and isolation wells in isolation regions in a p-type substrate. The breakdown voltage is adjusted by modulating the ion doping profile. Furthermore, parameters of implanting conductive ions are adjusted for implanting conductive ions into both high-voltage device regions and low-voltage device regions. The isolation wells formed in isolation regions between devices are for separating device formed over high-voltage device regions and device formed over low-voltage device regions. The thickness of a HV gate oxide layer is thicker than the thickness of an LV gate oxide layer for modulating threshold voltages of high-voltage devices and low-voltage devices.
Abstract:
A device includes an active region and a coupling capacitor. The capacitor includes a first floating gate as an upper capacitor plate of the coupling capacitor, and a doped semiconductor region as a lower capacitor plate of the coupling capacitor. The doped semiconductor region includes a surface portion at a surface of the active region, and a sidewall portion lower than a bottom surface of the surface portion. The sidewall portion is on a sidewall of the active region. A capacitor insulator is disposed between the upper capacitor plate and the lower capacitor plate. The capacitor insulator includes an upper portion, and a sidewall portion lower than a bottom surface of the upper portion.
Abstract:
An electrostatic discharge (ESD) protection device with adjustable single-trigger or multi-trigger voltage is provided. The semiconductor structure has multi-stage protection semiconductor circuit function and adjustable discharge capacity. The single-trigger or multi-trigger semiconductor structure may be fabricated by using the conventional semiconductor process, and can be applied to IC semiconductor design and to effectively protect the important semiconductor devices and to prevent the semiconductor devices from ESD damage. In particular, the present invention can meet the requirements of high power semiconductor device and has better protection function compared to conventional ESD protection circuit. In the present invention, a plurality of N-wells or P-wells connected in parallel are used to adjust the discharge capacity of various wells in the P-substrate so as to improve the ESD protection capability and meet different power standards.
Abstract:
A MOSFET with an isolation structure is provided. An N-type MOSFET includes a first N-type buried layer and a P-type epitaxial layer disposed in a P-type substrate. A P-type FET includes a second N-type buried layer and the P-type epitaxial layer disposed in the P-type substrate. The first, second N-type buried layers and the P-type epitaxial layer provide isolation between FETs. In addition, a plurality of separated P-type regions disposed in the P-type epitaxial layer further provides an isolation effect. A first gap exists between a first thick field oxide layer and a first P-type region, for raising a breakdown voltage of the N-type FET. A second gap exists between a second thick field oxide layer and a second N-well, for raising a breakdown voltage of the P-type FET.
Abstract:
A structure of a vertical transistor with field region is provided. The vertical transistor comprises a field-doping region formed in a substrate next to a core region of the vertical transistor By modulating the doping density, length, and geometrical pattern of the field region, and by connecting the field region to respective well of rim core regions of the vertical transistor, the present invention realizes a stable breakdown voltage with short length of the field region. Therefore, the device area and the manufacturing cost can be reduced.
Abstract:
A high resistance CMOS resistor with a relatively small die size is provided. The CMOS resistor includes a p-field region disposed in a n-well of a substrate and a pair of p-type contact regions respectively disposed beside a field oxide layer in the n-well. The pair of p-type contact regions are respectively connected to two sides of the p-field region as a first ohmic contact and a second ohmic contact for the CMOS resistor. The CMOS resistor according to the present invention has a resistance of, for example, 10 kΩ-20 kΩ per square.