Abstract:
Fast turn on silicon controlled rectifiers for ESD protection. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of a second conductivity type; a second well of the second conductivity type; a first diffused region of the first conductivity type and coupled to a first terminal; a first diffused region of the second conductivity type; a second diffused region of the first conductivity type; a second diffused region of the second conductivity type in the second well; wherein the first diffused region of the first conductivity type and the first diffused region of the second conductivity type form a first diode, and the second diffused region of the first conductivity type and the second diffused region of the second conductivity type form a second diode, and the first and second diodes are series coupled between the first terminal and the second terminal.
Abstract:
The present invention is to provide a method of creating a PIN silicon thin film comprising the steps of providing a molten P-type, Intrinsic and N-type semiconductor material. Next, it is performing a down draw process or a casting process of the molten P-type. Intrinsic and N-type semiconductor material. Then, it is selectively performing a dual-side rolling process to create a P-type, Intrinsic and N-type semiconductor ribbon. Subsequently, it is performing a step of joining the P-type, Intrinsic and N-type semiconductor ribbon to form a PIN semiconductor ribbon. Finally, it is performing a roll press process or a pressing process to the PIN semiconductor ribbon to create the PIN semiconductor thin film.
Abstract:
Some embodiments relate to an electrostatic discharge (ESD) protection device to protect a circuit that is electrically connected to first and second circuit nodes from an ESD event. The ESD protection device includes a first electrical path extending between the first and second circuit nodes and including first and second ESD detection elements arranged thereon. The ESD protection device also includes first and second voltage bias elements having respective inputs electrically connected to respective outputs of the first and second ESD detection elements. A second electrical path extends between the first and second circuit nodes and is in parallel with the first electrical path. The second electrical path includes a voltage controlled shunt network having at least two control terminals electrically connected to respective outputs of the first and second voltage bias elements. Other embodiments are also disclosed.