Abstract:
An apparatus for adjusting the force in a door operator or closer includes a tube rotatable about a longitudinal axis and a coil spring therein connected to door operator/closer. A fixed adjusting screw extends along the longitudinal axis of the housing through the coil spring and a spring collar is threaded onto the adjusting screw and rotatable with the tube. The spring collar bears on the distal end of the spring to vary the spring compression upon rotation of the housing and thereby vary force applied by the door operator or closer. The housing has an opening though which the spring is visible, and the tube has markings indicating the degree of spring compression. An indicator is moveable along and visible outside the housing to indicate the compression of the spring.
Abstract:
A door closer, comprising a door closer housing mounted to one of a door frame or a door surface and a linkage arm for pivoting the door between open and closed positions. The linkage arm has a first and second end, the first end mounted to the other of the door frame or the door surface. The door closer includes a rotatable connector between the linkage arm and the door closer housing, the linkage arm second end engaging with the rotatable connector. The connector has a rotatable body portion and head protrusion substantially secured in a female receptor to transmit rotation about a longitudinal axis of the connector. One or both of the head protrusion or female receptor has a curved profile and is further movable with respect to the head protrusion to permit limited rotational misalignment of the linkage arm on any axis perpendicular to the connector longitudinal axis.
Abstract:
A door closer assembly is provided, including a valve regulating an amount of hydraulic fluid that flows through the valve. The amount of hydraulic fluid flowing through the valve controls a force generated by the door closer assembly on a door. A first sensor measures an angular position of the door, and a second sensor measures an angular position of the valve. The angular position of the valve determines the amount of hydraulic fluid flowing through the valve. A controller controls the adjustment of the valve based on the angular position of the door and the angular position of the valve.
Abstract:
An apparatus for adjusting the force in a door operator or closer includes a tube rotatable about a longitudinal axis and a coil spring therein connected to door operator/closer. A fixed adjusting screw extends along the longitudinal axis of the housing through the coil spring and a spring collar is threaded onto the adjusting screw and rotatable with the tube. The spring collar bears on the distal end of the spring to vary the spring compression upon rotation of the housing and thereby vary force applied by the door operator or closer. The housing has an opening though which the spring is visible, and the tube has markings indicating the degree of spring compression. An indicator is moveable along and visible outside the housing to indicate the compression of the spring.
Abstract:
A door closer with an electric motor-assisted closing feature, that may generate its own power to assist in closing, and controls the speed of opening and closing of the door during generation is disclosed. Embodiments of the present disclosure are realized by a motorized door closer that electrically creates a latch boost force for a closing door. The door closer includes a motor disposed to operatively connect to a door so that the door will moved toward closed when the motor moves, and a position sensor to determine a position of the door. A processor is programmed to exert a closing force on the door in the latch boost region or when it otherwise detects that a motor assist is needed.
Abstract:
A door operator comprises a door driver for opening and closing a door, a controller including a microprocessor connected to and controlling the door driver, a graphical user interface comprising a display screen with touch select input coupled to the microprocessor to display information stored in the controller and to receive instructions selected from the display screen by a user, and a memory module coupled to the microprocessor and storing code executed by the microprocessor. The microprocessor under control of the code displays to the user various menu items on the graphical user interface display and enables the user to select among the menu items using the display screen with touch select input such that the microprocessor derives a control signal. Circuitry is configured to receive the control signal from the microprocessor and to carry the control signal to the door driver.
Abstract:
A retractor element includes a rigid slide connected between a latch bolt and a solenoid plunger for movement between a first position and a second position, the slide operably connected to plunger. A pivoting link defines a slot having an inner end portion extending transversely, the slot configured for pivoting the link when the slide moves between the first position and the second position of the slide. When the retracting mechanism is energized the plunger retracts causing movement of the slide to the second position of slide and the pin to enter the transverse end of the slot in the link. A bearing surface intersects the path of movement of the pin such that significantly less current is required for retaining the plunger in the retracted position than to retract the plunger for blocking the return of the latch bolt to the projected position.
Abstract:
A door operator includes a door driver for opening and closing a door, and a control system including a microprocessor having multiple microprocessor inputs. The microprocessor is connected to and controls the door driver. The microprocessor has multiple program modules corresponding to input functions to be performed by the door operator. The door operator includes a plurality of door operator inputs connected to corresponding ones of the microprocessor inputs, and a user interface connected to the microprocessor. The user interface allows a user to associate a selected door operator input and corresponding microprocessor input to a selected program module corresponding to a selected function to be performed by the door operator.