Abstract:
Provided is a process for producing a regenerated hydrotreating catalyst by regenerating a spent hydrotreating catalyst in a prescribed temperature range, wherein the prescribed temperature range is a temperature range of T1−30° C. or more and T2+30° C. or less, as determined by subjecting the spent hydrotreating catalyst to a differential thermal analysis, converting a differential heat in a measuring temperature range of 100° C. or more and 600° C. or less to a difference in electromotive force, differentiating the converted value twice by temperature to provide a smallest extreme value and a second smallest extreme value, and representing a temperature corresponding to the extreme value on the lower-temperature side as T1 and a temperature corresponding to the extreme value on the higher-temperature side as T2.
Abstract:
A method of producing a regenerated hydrotreating catalyst, including a first step of preparing a hydrotreating catalyst that has been used for hydrotreatment of a petroleum fraction and has a metal element selected from Group 6 elements of the periodic table; a second step of performing regeneration treatment for part of the catalyst prepared in the first step, then performing X-ray absorption fine structure analysis for the catalyst after the regeneration treatment, and obtaining regeneration treatment conditions in which a ratio IS/IO of a peak intensity IS of a peak attributed to a bond between the metal element and a sulfur atom to a peak intensity IO of a peak attributed to a bond between the metal element and an oxygen atom is in the range of 0.1 to 0.3 in a radial distribution curve obtained from an extended X-ray absorption fine structure spectrum.
Abstract:
Provided is a process for producing a regenerated hydrotreating catalyst by regenerating a spent hydrotreating catalyst in a prescribed temperature range, wherein the prescribed temperature range is a temperature range of T1−30° C. or more and T2+30° C. or less, as determined by subjecting the spent hydrotreating catalyst to a differential thermal analysis, converting a differential heat in a measuring temperature range of 100° C. or more and 600° C. or less to a difference in electromotive force, differentiating the converted value twice by temperature to provide a smallest extreme value and a second smallest extreme value, and representing a temperature corresponding to the extreme value on the lower-temperature side as T1 and a temperature corresponding to the extreme value on the higher-temperature side as T2.
Abstract:
The present invention relates to a regenerated hydrotreatment catalyst regenerated from a hydrotreatment catalyst for treating a petroleum fraction, the hydrotreatment catalyst being prepared by supporting molybdenum and at least one species selected from metals of Groups 8 to 10 of the Periodic Table on an inorganic carrier containing an aluminum oxide, wherein a residual carbon content is in the range of 0.15 mass % to 3.0 mass %, a peak intensity of a molybdenum composite metal oxide with respect to an intensity of a base peak is in the range of 0.60 to 1.10 in an X-Ray diffraction spectrum, and a peak intensity of a Mo—S bond derived from a residual sulfur peak with respect to an intensity of a base peak is in the range of 0.10 to 0.60 in a radial distribution curve obtained from an extended X-ray absorption fine structure spectrum of an X-ray absorption fine structure analysis.
Abstract:
A method for the continuous preparation of a polyethylene having high strength and high modulus of elasticity is here disclosed which comprises the steps of mixing 100 parts by weight of an ultra-high-molecular-weight polyethylene powder having an intrinsic viscosity of 5 to 50 dl/g in decalin at 135.degree. C. with 2 to 50 parts by weight of a liquid organic compound having a boiling point higher than the melting point of the polyethylene, feeding the resulting mixture to between a pair of upper and lower endless belts facing each other, continuously compression-molding the mixture at a temperature less than the melting point of the mixture by pressing means disposed inside the endless belts, and rolling and then drawing the same.
Abstract:
A process for the production of polyethylene materials oriented at a high level is disclosed in which a selected ethylene polymer as produced is extruded or rolled at a temperature lower than its melting point and subsequently subjected to stretching. The polymer is from 5 to 50 dl/g at 135.degree. C. in decalin in intrinsic viscosity and smaller than 60 .ANG. in crystal size on a plane (110) in the diffraction pattern.