Abstract:
A stationary sheave half of a V-belt type continuously variable transmission (CVT) comprises a primary sheave mounted to a primary sheave shaft and a secondary sheave mounted to a secondary sheave shaft. The stationary sheave half of the secondary sheave comprises a sheave body, which is substantially in the form of a doughnut plate and around which a V-belt is wound, and a substantially cylindrical-shaped boss portion extending rightward from a right side of the sheave body. The sheave body and the boss portion are formed separately.
Abstract:
A belt-type continuously variable transmission includes a primary sheave including a pair of first clamp surfaces, a secondary sheave including a pair of second clamp surfaces, and a belt endlessly wound between both of the primary and secondary sheaves. The belt includes contact surfaces clamped between the first clamp surfaces and between the second clamp surfaces. Powder having infusibility as a friction enhancing material is held on at least one of the first clamp surfaces of the primary sheave, the second clamp surfaces of the secondary sheave, and the contact surfaces of the belt.
Abstract:
A motorcycle having a belt type CVT and an engine unit in which an axial length of a cylinder is restricted. A body frame comprises a down frame extending vertically. The engine unit comprises a four-stroke engine, a belt type CVT, a clutch and a crank case. A cylinder is arranged rearwardly of the down frame with an axis thereof extending vertically. The clutch is provided between a secondary sheave shaft and an output shaft. The crank case is formed with an oil reservoir portion below a crank shaft to store lubricating oil. A rear end of the oil reservoir portion is rearward of a front end of a secondary sheave. An axis of the crank shaft is below an axis of the secondary sheave shaft.
Abstract:
A compact power unit for a vehicle having a clutch actuator is provided. The power unit includes a clutch actuator and a drive force transmission mechanism for transmitting the drive force of the clutch actuator to the clutch. The clutch actuator and the drive force transmission mechanism are arranged within a casing of the power unit. A drive shaft of the clutch actuator extends in the vertical direction. The drive force transmission mechanism includes a worm shaft coupled to the drive shaft of the clutch actuator, a first solid of revolution including a worm wheel portion which engages the worm shaft, a second solid of revolution which engages a gear portion of the first solid of revolution, and a ball cam. The ball cam converts torque from the second solid of revolution into a force which acts in the axial direction of a slide shaft of the clutch.
Abstract:
A centrifugal clutch for a vehicle includes a clutch housing having friction plates, a clutch boss having clutch plates, a pressure plate, and roller weights that press the pressure plate in a direction such that the friction plates and the clutch plates are brought into frictional contact with each other when the roller weights receive a centrifugal force. The vehicle power unit includes a main shaft which has an oil supply passage formed therein. The clutch includes a first oil supply path that supplies oil via the oil supply passage to the friction and clutch plates. The clutch includes a second oil supply path that supplies oil via the oil supply passage to the roller weights. The first and second oil supply paths are formed individually to allow independent adjustment of oil supply to each path.
Abstract:
A motorcycle has a frame and a power unit. The frame comprises a main frame member extending rearward from a steering head pipe. The power unit comprises a drive source, power transmission devices attached to the output end of the drive source, and a casing that houses the power transmission devices and that is suspended from the main frame member. The casing of the power unit comprises a recess opening toward the main frame member. A boss is formed on the bottom of the recess and is suspended from the main frame member.
Abstract:
An engine has a built-in continuously variable transmission (CVT) interconnecting a crankshaft connected through a connecting rod to a piston and a transmission shaft to which the rotation of the crankshaft is transmitted for changing speed between both of the shafts. A driven pulley and a clutch are disposed on the transmission shaft. A balancer shaft to which the rotation of the crankshaft is transmitted and the clutch are disposed in an overlapping positional relationship with each other in the direction of the crankshaft.
Abstract:
Wear of a V-belt and wear of sheaves in a belt type continuously variable transmission is compatibly prevented. A V-belt wound around a primary sheave\ and a secondary sheave is formed with a resin block belt. A sheave surface of the primary sheave is plated with chrome. The secondary sheave is made of stainless steel and is not plated with chrome. The sheave surface hardness of the secondary sheave is lower than the sheave surface hardness of the primary sheave.
Abstract:
An engine having an engine case on one side of which a V-belt type of continuously variable transmission is provided, the CVT being placed in a transmission case and constituted that a V-belt is routed around a drive pulley and a driven pulley, the drive pulley being attached to one end of a crankshaft, the driven pulley being attached to one end of a transmission shaft parallel to the crankshaft, characterized in that the crankshaft is supported for free rotation with the engine case, one end of the crankshaft is projected in cantilever fashion from the engine case into the transmission case, the drive pulley is attached to the projected portion, and the transmission case is made as a component separate from or independent of the engine case and supported with the engine case so that a space is present between the engine case and the transmission case.
Abstract:
A riding type vehicle with improved cooling function of a V-belt continuously variable transmission and a compact body cover. A front side of a seat is partitioned with a space recessed to a lower side. The inside of a vehicle body cover is partitioned with a center tunnel. An engine unit is supported by a vehicle body frame on a lower side of the recessed space. The engine unit includes a transmission case having a belt chamber containing the V-belt continuously variable transmission. A footrest is arranged on an outer side in a vehicle width direction of the transmission case. An intake duct that guides air for cooling the V-belt type continuously variable transmission is disposed on an outer side in a vehicle width direction of the center tunnel and on an upper side of the transmission case.