Abstract:
A switch power supply includes an AC/DC converter, a DC/DC converter, a battery charge-discharge switching circuit, and a detecting and controlling circuit. The AC/DC converter receives an input AC voltage and converts the input AC voltage into a DC voltage. The DC/DC converter converts the DC voltage into several working voltages required for operating the electronic device. The battery charge-discharge switching circuit is selectively connected to the AC/DC converter or the DC/DC converter and connected to the battery. The detecting and controlling circuit detects the input AC voltage. If the input AC voltage is abnormal, the detecting and controlling circuit issues a control signal to the battery charge-discharge switching circuit. In response to the control signal, the battery issues a discharge voltage to the DC/DC converter and the discharge voltage is converted into the working voltages by the DC/DC converter.
Abstract:
A power adaptor is provided. The power adaptor includes a voltage converter, a connecting port, a first transformer and a controller. The voltage converter receives an input voltage and determines whether to convert the input voltage to an output voltage according to an indicating signal. The first transformer includes a primary side and a secondary side. The primary side and the secondary side are coupled to each other, and a first end and a second end of the secondary side are coupled to the connecting port, respectively. The controller generates the indicating signal according to a voltage at the primary side of the first transformer. The connecting port is used to connect to an electrical device, and when the connecting port is electrically connected to the electrical device, a first end and a second end of the secondary side are short to a reference ground end of the secondary side.
Abstract:
The invention discloses a compute system which may detect the state of a power supply. The system includes a power supply and a motherboard. The power supply has a detecting unit for detecting a power state of the power supply. The detected information is converted to a high-frequency signal and outputted to the motherboard via a “power good” pin in an ATX power connector. The motherboard may obtain a voltage, current, power, temperature and other values inside the power supply via the ATX power connector and allow the values to be displayed on the screen to provide a real-time monitoring function for the users.
Abstract:
The invention discloses a compute system which may detect the state of a power supply. The system includes a power supply and a motherboard. The power supply has a detecting unit for detecting a power state of the power supply. The detected information is converted to a high-frequency signal and outputted to the motherboard via a “power good” pin in an ATX power connector. The motherboard may obtain a voltage, current, power, temperature and other values inside the power supply via the ATX power connector and allow the values to be displayed on the screen to provide a real-time monitoring function for the users.
Abstract:
The invention discloses a power supply with a frequency conversion function. The power supply is connected with a motherboard. The power supply includes a pulse width modulation (PWM) controller, a direct current-direct current (DC-DC) converter, and a switch resistor modulation circuit. The PWM controller generates a PWM signal. The DC-DC converter is connected with the PWM controller and the motherboard, and it generates a plurality of voltages to the motherboard after it receives the PWM signal. The switch resistor modulation circuit provides a first resistance value and a second resistance value switched to correspondingly generate a first switching frequency or a second switching frequency. The second resistance value is larger than the first resistance value. The second switching frequency is smaller than the first switching frequency.
Abstract:
A power detection jack can be connected with a plurality of power output jacks respectively to receive different power levels. Each of the power output jacks has a first insulation element, and the lengths of the first insulation elements are different from each other. The power detection jack includes a first electrode, a second electrode and a power detection element. The first electrode is disposed inside the power detection jack. The second electrode is disposed outside the power detection jack. The power detection element is disposed between the first electrode and the second electrode. When the power detection jack is connected with one of the power output jacks, the power level provided by the power output jack is determined according to a connection state of the power detection element and the first insulation element.
Abstract:
A power supply device includes a power input module and a power functional module. The power input module has a power connecting unit and a power converting unit, which has a first connecting part. The power functional module comprises a functional unit or a plurality of functional units which connect with each other. The power input module is detachably coupled with the power functional modules of different assembling types, so that the power supply device can be transformed into various application modes. Accordingly, the power supply device can satisfy multiple applications and uses.
Abstract:
A power supply system of an electronic device and a power supply method thereof are provided. Directly detecting the power voltage, when a power anomaly of the power voltage is detected, the electronic device may enter the energy-saving mode immediately for reducing power consumption, and a required DC voltage may be provided directly from the battery.
Abstract:
A power supply system of an electronic device and a power supply method thereof are provided. Directly detecting the power voltage, when a power anomaly of the power voltage is detected, the electronic device may enter the energy-saving mode immediately for reducing power consumption, and a required DC voltage may be provided directly from the battery.