Abstract:
A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
Abstract:
A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. Each abrasive element has two triangular abrasive platelets, each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the disc backing. A first portion of the abrasive elements is arranged in alternating first rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines. A second portion of the abrasive elements is arranged in alternating second rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the horizontal lines. The first and second rows repeatedly alternate along the vertical lines. Methods of making and using the coated abrasive disc are also disclosed.
Abstract:
A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
Abstract:
A melt blowing process comprising: (a) providing a thermoplastic polymer material that includes at least one or a plurality of polyester polymers and at least one or a combination of different meltable metal phosphinates; and (b) melt blowing the thermoplastic polymer material into at least one fiber or a plurality of fibers, with each fiber having a diameter or thickness that is less than about 10 microns. The metal phosphinate is in an amount that (a) reduces the viscosity of the polyester polymer and (b) functions as a crystallizing agent, which at least promotes crystallization of the polyester polymer, when the thermoplastic polymer material is melt blown into the at least one fiber. Non-woven and woven fibrous structures can be made using fibers made from this process.
Abstract:
Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. In some embodiments, the fibers comprise a viscosity modifier and/or an anionic surfactant. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
Abstract:
A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed at regularly-spaced points along a spiral pattern extending outwardly toward the outer circumference. Each triangular abrasive platelet has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing, and at least 70 percent of the triangular abrasive platelets are disposed in a recurring sequential orientation having an oscillating Z-axis rotational orientation of the first respective sidewall relative to the tangents to the spiral pattern at regularly-spaced points. Methods of making and using the coated abrasive disc are also disclosed.