Abstract:
Lighting systems include a light-transmissive tube and a light source assembly disposed to inject light into a cavity defined by the tube. The cavity extends along a longitudinal axis. At least a portion of the tube includes an inner structured surface facing the cavity, and an outer structured surface facing away from the cavity. The inner structured surface is configured to direct a first portion of the injected light towards the outer structured surface, and a second portion of the injected light back into the cavity. The inner structured surface includes elongated first features and the outer structured surface includes elongated second features. At least one of the elongated first features and the elongated second features are oriented obliquely relative to the longitudinal axis such that they form respective helixes along the tube.
Abstract:
The present disclosure provides a method of making an orthodontic article. The method includes (a) providing a photopolymerizable composition; (b) selectively curing the photopolymerizable composition using actinic radiation to form an article in the shape of an orthodontic article including a number of layers of at least one photopolymerized polymer; and (c) moving the article and thereby generating a mass inertial force in the uncured photopolymerizable composition. The article has a first surface, and no more than 75% of the first surface has a slope magnitude greater than 2.5 degrees. Orthodontic articles are also provided, including an orthodontic article that is prepared according to the method. Orthodontic articles having low extractable component content are further provided. The mass inertial force tends to form a coating layer of uncured photopolymerizable composition on the article, and curing the coating layer can form a surface having low slope magnitude. The low slope magnitude may be correlated to a low haze of the surface of the article.
Abstract:
A system for repositioning teeth a patient from an initial tooth arrangement to a final tooth arrangement includes a plurality of incremental position adjustment appliances, each having an arrangement of cavities shaped to receive and reposition teeth of the patient. The cavities in at least one appliance in the system have a different geometry than that of at least one other appliance in the system. At least some of the appliances in the system are successively worn by the patient to exert force on at least one tooth and move the teeth of the patient from a first arrangement to a successive arrangement different from the first arrangement. The system includes a first multilayer shell with a bending stiffness factor less than about 0.1 GPa*mm3 and an elastic modulus no greater than about 1.5 GPa; and a second shell with a bending stiffness factor greater than 0.1 GPa*mm3.
Abstract:
A lightguide functioning as a luminaire. The luminaire includes at least one solid state light source, such as an LED, and a lightguide configured to receive light from the solid state light source. Light from the light source is coupled into the lightguide and transported within it by total internal reflection until the light exits the lightguide. A shape of the lightguide causes and directs extraction of the light, and can also be used to create a particular pattern of the extracted light. Such shapes include linear wedges and twisted wedges. Optical films can be included on the light input and output surfaces of the lightguide.
Abstract:
The present disclosure provides a novel construction for an illuminated light splitter in a mirror-lined light duct. In particular, the present disclosure addresses the ability to split partially collimated light travelling through a light duct into two different light ducts using light diverters, while extracting a portion of the light from each of the light ducts and also from the common intersection region. In some cases, the visual appearance of the illumination in the intersection region can appear non-uniform due to the presence of the light diverters, and the present disclosure provides an illuminated light duct splitter (100, 200, 300) configuration that homogenizes the output from the illuminated duct within the intersection region (117, 217, 317).
Abstract:
The present disclosure provides a novel construction for an illuminated light splitter in a mirror-lined light duct. In particular, the present disclosure addresses the ability to split partially collimated light travelling through a light duct into two different light ducts using light diverters, while extracting a portion of the light from each of the light ducts and also from the common intersection region. In some cases, the visual appearance of the illumination in the intersection region can appear non-uniform due to the presence of the light diverters, and the present disclosure provides an illuminated light duct splitter (100, 200, 300) configuration that homogenizes the output from the illuminated duct within the intersection region (117, 217, 317).