Abstract:
Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle using a combination of therapies. The method may include the introduction of structurally reinforcing agents. In other embodiments, agents may be introduced into a ventricle to increase compliance of the ventricle. The prevention of remodeling may include the prevention of thinning of the ventricular infarct zone. Another embodiment includes the reversing or prevention of ventricular remodeling with electro-stimulatory therapy. The unloading of the stressed myocardium over time effects reversal of undesirable ventricular remodeling. These therapies may be combined with structurally reinforcing therapies. In other embodiments, the structurally reinforcing component may be accompanied by other therapeutic agents. These agents may include but are not limited to pro-fibroblastic and angiogenic agents.
Abstract:
A bioscaffolding can be formed within a post-myocardial infarct region sufficient to cause attenuation of a rate of myocardial infarct expansion. A bioscaffolding may further be formed in the post-myocardial infarct region to cause an increase in posterior left ventricular wall thickness. The gel or bioscaffolding can be formed from a mixture of gel components of different gelation systems. For example, a bioscaffolding can be formed by mixing at least two different components of at least two different two-component gelation systems to form a first mixture and by mixing at least two different components (other than the components that make up the first mixture) of the at least two different two-component gelation systems to form a second mixture.
Abstract:
A bioscaffolding can be formed within a post-myocardial infarct region sufficient to cause attenuation of a rate of myocardial infarct expansion. A bioscaffolding may further be formed in the post-myocardial infarct region to cause an increase in posterior left ventricular wall thickness. The gel or bioscaffolding can be formed from a mixture of gel components of different gelation systems. For example, a bioscaffolding can be formed by mixing at least two different components of at least two different two-component gelation systems to form a first mixture and by mixing at least two different components (other than the components that make up the first mixture) of the at least two different two-component gelation systems to form a second mixture.
Abstract:
Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle. In other embodiments, the method includes the introduction of structural reinforcing agents such as those agents containing aloe-derived pectin. In other embodiments, the structural reinforcing agent may be accompanied by other therapeutic agents. These agents may include, but are not, limited to pro-fibroblastic and angiogenic agents.
Abstract:
Compositions, methods of manufacture and methods of treatment for post-myocardial infarction are herein disclosed. In some embodiments, the composition includes at least two components. In one embodiment, a first component can include a first functionalized polymer and a substance having at least one cell adhesion site combined in a first buffer at a pH of approximately 6.5. A second component can include a second buffer in a pH of between about 7.5 and 9.0. A second functionalized polymer can be included in the first or second component. In some embodiments, the composition can include at least one cell type and/or at least one growth factor. In some embodiments, the composition(s) of the present invention can be delivered by a dual bore injection device to a treatment area, such as a post-myocardial infarct region.