Abstract:
A multi-touch sensor panel is disclosed that can include a glass subassembly having a plurality of column traces of substantially transparent conductive material that can be formed on the back side, wherein the glass subassembly can also act as a cover that can be touched on the front side. Row traces of the same or different substantially transparent conductive material can then be located near the column traces, and a layer of dielectric material can be coupled between the column traces and the row traces. The row and column traces can be oriented to cross over each other at crossover locations separated by the dielectric material, and the crossover locations can form mutual capacitance sensors for detecting one or more touches on the front side of the glass subassembly.
Abstract:
An ambient light sensor that is operable in high gain mode and low gain mode is provided. The high gain mode may help provide satisfactory sensitivity at low light levels but may generate saturated output levels in bright ambient lighting conditions. Low gain mode may therefore be switched into use when bright ambient lighting conditions are detected. The ambient light sensor may be placed in high gain mode by default. An auto-gain switch controller may detect whether the ambient light reading is saturated during a given period of time. In response to determining that the ambient light reading is saturated for a programmable number of consecutive time periods, the auto-gain switch controller may reset and switch the ambient light sensor to the low gain mode. The gain state may optionally be embedded into the ambient light sensor output.
Abstract:
An ambient light sensor that is operable in high gain mode and low gain mode is provided. The high gain mode may help provide satisfactory sensitivity at low light levels but may generate saturated output levels in bright ambient lighting conditions. Low gain mode may therefore be switched into use when bright ambient lighting conditions are detected. The ambient light sensor may be placed in high gain mode by default. An auto-gain switch controller may detect whether the ambient light reading is saturated during a given period of time. In response to determining that the ambient light reading is saturated for a programmable number of consecutive time periods, the auto-gain switch controller may reset and switch the ambient light sensor to the low gain mode. The gain state may optionally be embedded into the ambient light sensor output.
Abstract:
An ambient light sensor that is operable in high gain mode and low gain mode is provided. The high gain mode may help provide satisfactory sensitivity at low light levels but may generate saturated output levels in bright ambient lighting conditions. Low gain mode may therefore be switched into use when bright ambient lighting conditions are detected. The ambient light sensor may be placed in high gain mode by default. An auto-gain switch controller may detect whether the ambient light reading is saturated during as given period of time in response to determining that the ambient light reading is saturated for a programmable number of consecutive time periods, the auto-gain switch controller may reset and switch the ambient light sensor to the low gain mode. The gain state may optionally be embedded into the ambient light sensor output.
Abstract:
An electronic device may have a display with a brightness that is adjusted based on ambient light data from multiple ambient light sensors. Sensors that are shadowed can be ignored. A touch sensor array in the display may have electrodes that overlap ambient light sensors. When a touch sensor signal indicates that an external object is covering one of the ambient light sensors, data from that ambient light sensor can be discarded. The ambient light sensors may include a primary ambient light sensor such as a human-eye-response ambient light sensor and may include an array of secondary ambient light sensors such as non-human-eye-response sensors. The secondary ambient light sensors may be formed on a display layer such as a thin-film-transistor layer and may be formed from thin-film materials. An algorithm may be used to dynamically calibrate non-human-eye-response ambient light sensors to the human-eye-response ambient light sensor.
Abstract:
Devices, methods and graphical user interfaces for manipulating user interfaces based on fingerprint sensor inputs are provided. While a display of an electronic device with a fingerprint sensor displays a first user interface, the device may detect movement of a fingerprint on the fingerprint sensor. In accordance with a determination that the movement of the fingerprint is in a first direction, the device allows navigating through the first user interface, and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device allows displaying a second user interface different from the first user interface on the display.
Abstract:
A photoplethysmographic (PPG) device is disclosed. The PPG device can include one or more light emitters and one or more light sensors to generate the multiple light paths for measuring a PPG signal and perfusion indices of a user. The multiple light paths between each pair of light emitters and light detectors can include different separation distances to generate both an accurate PPG signal and a perfusion index value to accommodate a variety of users and usage conditions. In some examples, the multiple light paths can include the same separation distances for noise cancellation due to artifacts resulting from, for example, tilt and/or pull of the device, a user's hair, a user's skin pigmentation, and/or motion. The PPG device can further include one or more lenses and/or reflectors to increase the signal strength and/or and to obscure the optical components and associated wiring from being visible to a user's eye.
Abstract:
A wearable device is described. The wearable device includes a housing having a back cover, and an optical mask on first portions of the back cover. The back cover includes a set of windows, with a first subset of windows in the set of windows being defined by an absence of the optical mask on second portions of the back cover, and a second subset of windows in the set of windows being inset in a set of openings in the back cover. An optical barrier surrounds each window in the second subset of windows. A set of light emitters is configured to emit light through at least some of the windows in the set of windows. A set of light detectors is configured to receive light through at least some of the windows in the set of windows.
Abstract:
A photoplethysmographic (PPG) device is disclosed. The PPG device can include one or more light emitters and one or more light sensors to generate the multiple light paths for measuring a PPG signal and perfusion indices of a user. The multiple light paths between each pair of light emitters and light detectors can include different separation distances to generate both an accurate PPG signal and a perfusion index value to accommodate a variety of users and usage conditions. In some examples, the multiple light paths can include the same separation distances for noise cancellation due to artifacts resulting from, for example, tilt and/or pull of the device, a user's hair, a user's skin pigmentation, and/or motion. The PPG device can further include one or more lenses and/or reflectors to increase the signal strength and/or and to obscure the optical components and associated wiring from being visible to a user's eye.
Abstract:
An optical sensor can be multiplexed for different clients/features including estimating information or characteristics of a user's physiological signals. Additionally, the clients/features can include estimating information or characteristics independent from a user's physiological signals. As the number of clients increase and/or as the requirements for the clients increase, flexibility can be provided to accommodate the various clients. Parallelization of the optical sensor can be used to improve performance as the number of clients increase. For example, the hardware and software architecture can assemble patterns of time slots that measure all desired light paths for the multiple clients and distribute the corresponding measurements to each client according to the client requests. In some examples, the scanning sequence can be represented by frames including slots associated with multiple clients to compress the representation for larger or more complex scan sequences.