Abstract:
Systems and methods for managing data in non-volatile memory devices across a large range of operating temperatures are provided. Embodiments discussed herein selectively reprogram previously programmed data at a temperature that better enables the data to be read regardless of where within the range of operating temperatures the data is being read. Circuitry and methods discussed herein can keep track of a program temperature associated with each portion of non-volatile memory and use this information along with other criteria to selectively perform temperature based moves of data. This enables a mechanism for data to programmed in out-of-bounds temperature ranges to be reprogrammed within an in-bounds temperatures range so that a temperature delta between the reprogrammed temperature and the read operation temperature is below a threshold that ensure efficient and error free read operations to be performed.
Abstract:
Systems and methods for managing data in non-volatile memory devices across a large range of operating temperatures are provided. Embodiments discussed herein selectively reprogram previously programmed data at a temperature that better enables the data to be read regardless of where within the range of operating temperatures the data is being read. Circuitry and methods discussed herein can keep track of a program temperature associated with each portion of non-volatile memory and use this information along with other criteria to selectively perform temperature based moves of data. This enables a mechanism for data to programmed in out-of-bounds temperature ranges to be reprogrammed within an in-bounds temperatures range so that a temperature delta between the reprogrammed temperature and the read operation temperature is below a threshold that ensure efficient and error free read operations to be performed.
Abstract:
Systems and methods for managing data in non-volatile memory devices across a large range of operating temperatures are provided. Embodiments discussed herein selectively reprogram previously programmed data at a temperature that better enables the data to be read regardless of where within the range of operating temperatures the data is being read. Circuitry and methods discussed herein can keep track of a program temperature associated with each portion of non-volatile memory and use this information along with other criteria to selectively perform temperature based moves of data. This enables a mechanism for data to programmed in out-of-bounds temperature ranges to be reprogrammed within an in-bounds temperatures range so that a temperature delta between the reprogrammed temperature and the read operation temperature is below a threshold that ensure efficient and error free read operations to be performed.
Abstract:
A storage device includes multiple memory cells and storage circuitry. The storage circuitry is configured to write data to a group of the memory cells by applying to the group of the memory cells up to a maximal number of programming pulses. The storage circuitry is further configured to evaluate, after applying less than the maximal number of programming pulses, a criterion that predicts whether or not the data will be written successfully within the maximal number of programming pulses, and when the criterion predicts that writing the data will fail, to perform a corrective operation.
Abstract:
A method for data storage includes setting a plurality of memory cells to hold respective target analog values, by applying to the memory cells a sequence of iterations, each iteration includes attempting to set the target analog values and then verifying whether the target analog values have been reached in accordance with a verification condition. After applying a predefined number of the iterations, the verification condition is relaxed and a condition of whether the target analog values have been reached in accordance with the relaxed verification condition is verified.