Abstract:
A portable electronic device is provided that has a hybrid antenna. The hybrid antenna may include a slot antenna structure and an inverted-F antenna structure. The slot antenna portion of the hybrid antenna may be used to provide antenna coverage in a first communications band and the inverted-F antenna portion of the hybrid antenna may be used to provide antenna coverage in a second communications band. The second communications band need not be harmonically related to the first communications band. The electronic device may be formed from two portions. One portion may contain conductive structures that define the shape of the antenna slot. One or more dielectric-filled gaps in the slot may be bridged using conductive structures on another portion of the electronic device. A conductive trim member may be inserted into an antenna slot to trim the resonant frequency of the slot antenna portion of the hybrid antenna.
Abstract:
Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. The resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A parasitic monopole antenna resonating element or parasitic loop antenna resonating element may be located in the opening. Antenna tuning in the higher communications band may be implemented using an adjustable inductor in the parasitic element. Antenna tuning in the lower communications band may be implemented using an adjustable inductor that couples the antenna resonating element to the antenna ground.
Abstract:
An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
Abstract:
Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. An extended portion of the antenna ground may form an inverted-F antenna resonating element portion of the antenna resonating element. The antenna resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A first antenna feed may be coupled between the peripheral conductive electronic device housing structures and the antenna ground across the opening. A second antenna feed may be coupled to the inverted-F antenna resonating element portion of the antenna resonating element.
Abstract:
An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
Abstract:
A test station may include a test host, testing devices, and a test enclosure. A device under test (DUT) having a near-field communications (NFC) antenna may be placed in the test enclosure during production testing. The testing devices may have test antennas that may convey NFC test signals to the DUT in the test enclosure. Distances between test antennas and the DUT may be monitored by measuring path loss from the test antennas throughout testing. The testing station may also include a test unit and an RF test antenna. The test unit may use the RF test antenna to convey RF test signals to the DUT in the test enclosure. The DUT is marked as a passing DUT if gathered test data is satisfactory for each testing device in the test station and distance measurements between the test antennas and the DUT throughout testing are consistent with calibration measurements.
Abstract:
Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. Transceiver circuitry for transmitting and receiving radio-frequency antenna signals may be mounted on one end of a printed circuit board. Transmission line structures may be used to convey signals between an opposing end of the printed circuit board and the transceiver circuitry. The printed circuit board may be coupled to an antenna feed structure formed from a flexible printed circuit using solder connections. The flexible printed circuit may have a bend and may be screwed to conductive electronic device housing structures using one or more screws at one or more respective antenna feed terminals. Electrical components such as an amplifier circuit and filter circuitry may be mounted on the flexible printed circuit.
Abstract:
Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.
Abstract:
An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
Abstract:
An electronic device may have multiple near-field communications antennas. Multiplexer circuitry may have a transceiver port that is coupled to a near-field communications transceiver, and multiple antenna ports coupled to respective near-field communications antennas. Non-near-field communications antennas may be used by non-near-field communications circuitry. The electronic device may have a housing with opposing first and second ends and a display. One of the near-field communications antennas and one of the non-near-field communications antenna may be formed from shared antenna structures at the first end. Another of the near-field communications antennas and another of the non-near-field communications antennas may be formed from shared antenna structures at the second end. An additional near field communications antenna may be overlapped by the display.