Abstract:
Embodiments provided herein determine if an electronic subscriber identity module (eSIM) associated with a requested service can be installed in a secure element (SE) housed in a wireless device. Before requesting deployment of an eSIM suitable for the requested service from an eSIM delivery server, a carrier server asks that an original equipment manufacturer (OEM) server validate that an eSIM corresponding to a customer request should be deployed. The OEM server obtains information about the wireless device and information about the SE. When the carrier server requests validation, the OEM server evaluates the wireless device information and/or the SE information. If the OEM server indicates that deployment of the eSIM should proceed, the OEM server also indicates the eSIM type that is compatible with the wireless device and with the SE housed in the device.
Abstract:
Methods and apparatus to manage registration for cellular services of a secondary wireless device associated with a primary wireless device are disclosed. The secondary wireless device can detect entering proximity to the primary wireless device and in response to the detecting deactivate a cellular wireless interface of the secondary wireless device to conserve battery power, and provide an indication to the primary wireless device, via a non-cellular wireless interface, to cause the primary wireless device to perform a deregistration of the secondary wireless device for cellular services. The secondary wireless device can establish connections and communicate via non-cellular wireless interfaces while within proximity of the primary wireless device. Upon leaving proximity of the primary wireless device, the secondary wireless device can activate the cellular wireless interface and register for cellular services to permit establishing connections and communicating directly with a cellular wireless network via the cellular wireless interface.
Abstract:
This disclosure relates to inter radio access technology management for audiovisual calls. Wireless link availability and suitability for an audiovisual call may be evaluated for each of a first radio access technology and a second radio access technology. One or more wireless links on which to establish an audiovisual call may be selected based on the evaluations. The audiovisual call may be established on the selected wireless link(s). Wireless link availability and suitability for an audiovisual call may be monitored during the audiovisual call and decisions on whether to perform handover to a different wireless link and/or media duplication on multiple wireless links may be made based on the suitability for an audiovisual call of available wireless links.
Abstract:
Disclosed herein is a technique for updating firmware of an embedded Universal Integrated Circuit Card (eUICC) included in a mobile device. The technique includes the steps of (1) receiving, from a firmware provider, an indication that an updated firmware is available for the eUICC, (2) in response to the indication, providing, to the firmware provider, (i) a unique identifier (ID) associated with the eUICC, and (ii) a nonce value, (3) subsequent to providing, receiving, from the firmware provider, a firmware update package, wherein the firmware update package includes (i) authentication information, and (ii) the updated firmware, (4) subsequent to verifying the authentication information, persisting, to a memory included in the mobile device, a hash value that corresponds to the updated firmware, and (5) installing the updated firmware on the eUICC.
Abstract:
Techniques are disclosed relating to electronic security, e.g., for authenticating a mobile electronic device to allow access to system functionality (e.g., physical access to the system, starting an engine/motor, etc.). In some embodiments, a system and mobile device exchange public keys of public key pairs during a pairing process. In some embodiments, an asymmetric transaction process includes generating a shared secret using a key derivation function over a key established using a secure key exchange (e.g., elliptic curve Diffie-Hellman), and verifying a signature of the system before transmitting any information identifying the mobile device. In various embodiments, disclosed techniques may increase transaction security and privacy of identifying information.
Abstract:
Techniques are disclosed relating to electronic security, e.g., for authenticating a mobile electronic device to allow access to system functionality (e.g., physical access to the system, starting an engine/motor, etc.). In some embodiments, a system and mobile device exchange public keys of public key pairs during a pairing process. In some embodiments, an asymmetric transaction process includes generating a shared secret using a key derivation function over a key established using a secure key exchange (e.g., elliptic curve Diffie-Hellman), and verifying a signature of the system before transmitting any information identifying the mobile device. In various embodiments, disclosed techniques may increase transaction security and privacy of identifying information.
Abstract:
This disclosure relates to dynamic baseband management for a wireless device. The wireless device may be an accessory device. The accessory device may determine whether it has a short-range wireless communication link with a companion device. The accessory device may determine one or more proximity metrics relating to the companion device. The accessory device may further determine one or more metrics associated with user settings, user activity and/or application activity at the wireless device. The wireless device may select a (e.g., full, limited, or off) baseband operating mode based on any or all of these considerations.
Abstract:
Methods and apparatus for user authentication and human intent verification of administrative operations for eSIMs of an eUICC included in a mobile device are disclosed. Certain administrative operations, such as import, modification, and/or export, of an eSIM and/or for an eUICCs firmware can require user authentication and/or human intent verification before execution of the administrative operations are performed or completed by the mobile device. A user of the mobile device provides information to link an external user account to an eSIM upon (or subsequent to) installation on the eUICC. User credentials, such as a user name and password, and/or information generated therefrom, can be used to authenticate the user with an external server. In response to successful user authentication, the administrative operations are performed. Human intent verification can also be performed in conjunction with user authentication to prevent malware from interfering with eSIM and/or eUICC functions of the mobile device.
Abstract:
Some embodiments relate to methods for provisioning a secondary wireless device with an eSIM for wireless communication and activating multi-SIM functionality between the secondary wireless device and a primary wireless device having a subscribed SIM. The primary wireless device may act as a proxy in obtaining the eSIM for the secondary wireless device. The primary wireless device may then provide, to the cellular network, identifiers of the SIMs of the primary and secondary wireless devices. The primary wireless device may then request initiation of multi-SIM functionality for the two SIMs, and receive an indication that the multi-SIM functionality has been initiated. As an example, the multi-SIM functionality may be implemented by mapping the SIM of the primary wireless device and the SIM of the secondary wireless device (e.g., the provisioned eSIM) to the same Mobile Directory Number (MDN).
Abstract:
Disclosed herein is a technique for selecting a bootstrap electronic Subscriber Identity Module (eSIM) from among multiple bootstrap eSIMs stored in a secure element of a mobile device. Specifically, the technique involves selecting the bootstrap eSIM based on location information associated with the mobile device. When the mobile device is located at a first location (for example, a first country) a first bootstrap eSIM associated with a Mobile Network Operator (MNO) local to the first country is selected. Similarly, when the mobile device is located at a second location (for example, a second country), a second bootstrap eSIM associated with an MNO local to the second country is selected.