Abstract:
This application describes methods and apparatus to allocate uplink (UL) power dynamically across multiple parallel radio frequency links for wireless devices. The wireless device sets an initial maximum transmit power level (MTPL) for each UL radio link of multiple radio links used for UL traffic based on a duty cycle prediction for the respective UL radio link. The wireless device adjusts the initial MTPL for each UL radio link based on a predicted data throughput for the UL radio link relative to a total predicted data throughput for all UL radio links. The adjusted MTPL for each UL radio link can be also reduced when the UL radio link uses UL multiple input multiple output (MIMO) transmission via multiple antenna ports, e.g., by apportioning the adjusted MTPL among the multiple antenna ports of the UL radio link equally.
Abstract:
An electronic device having multiple antenna groups for data communication may determine a temperature of a first antenna group and determine a power gain of a second antenna group. The electronic device may communicate using the second antenna group in response to determining that the temperature of the first antenna group exceeds a temperature threshold and the power gain of the second antenna group exceeds a gain threshold. In some embodiments, the electronic device may receive communication link preferences, determine an antenna group that is disposed outside of thermal hotspots of the electronic device, and determine a beam that enables the communication link preferences via the antenna group. The electronic device may then transmit or receive data via the antenna group by forming the beam.
Abstract:
An electronic device may include wireless circuitry with a phased antenna array that conveys radio-frequency signals using signal beams of first and second orthogonal polarizations. The array may sweep over a set of signal beam pairs, each including a respective combination of signal beams of the first and second polarizations. The wireless circuitry may gather performance metric values for each of the polarizations and signal beam pairs. The circuitry may generate a filtered set of signal beam pairs by removing signal beam pairs having performance metric values that differ from a maximum of the wireless performance metric values by more than a threshold. The circuitry may select a signal beam pair from the filtered set having a minimum polarization imbalance. The array may concurrently convey first and second wireless data streams using the selected signal beam pair. Minimizing polarization imbalance may maximize overall data throughput for the device.
Abstract:
A method includes receiving an indication to transmit a first set of signals using a first standard (e.g., Long Term Evolution) via a first set of antennas of a radio frequency device and a second set of signals using a second standard (e.g., New Radio) via a second set of antennas. The method also includes transmitting the first set of signals via the first set of antennas using a first power based on positions of the first set and second set of antennas, exposure conditions of the first set and the second set of signals on a user, and/or priorities of the first and the second set of signals. Moreover, the method includes transmitting the second set of signals via the second set of antennas using a second power based on the positions of the antennas, the exposure conditions of the signals on the user, and/or priorities of the signals.
Abstract:
This disclosure relates to providing local address information while roaming. A wireless device may connect to a wireless local area network (WLAN) access point in a roaming location. The wireless device may communicate with one or more servers of a home network via the WLAN access point. The wireless device may provide a local address of the wireless device to the home network in one or more messages related to a service. The home network may be configured to determine a location of the wireless device based on the local address and determine whether to provide the service based on the location of the wireless device. In response to the home network determining to provide the service based on the location of the wireless device, the wireless device may perform the service using the home network via the WLAN access point.
Abstract:
In some embodiments, a cellular baseband processor communicates wirelessly and reports cellular metrics for both a first cellular RAT and a second cellular RAT. The cellular baseband processor may be configured to tune away, for a time interval, from the first cellular RAT to monitor for communications on the second cellular RAT. In some embodiments, the cellular baseband processor is configured not to report cellular metrics during the time interval to prevent a RAT manager from setting up a connection for voice calls on a WLAN RAT during the time interval. In some embodiments another processing element the RAT manager is configured to ignore cellular metrics from the cellular baseband processor during the interval. This may reduce signal load and power consumption, in some embodiments.
Abstract:
A processor in a mobile wireless device provisions a user identity module (UIM) card in the mobile wireless device in response to a user command. The processor detects a user command to provision the UIM card and reads a provisioning status of the UIM card from a UIM card provisioning status file in the UIM card. When the provisioning status is “not provisioned”, the processor establishes a bearer independent protocol (BIP) data connection to a server in a wireless network and exchanges provisioning data between the server and the UIM card until the UIM card commands the processor to close the BIP data connection. In representative embodiments, the UIM card provisioning status file includes fields for a UIM card provisioning status, a UIM card software version and a UIM card provisioning date/time, and the processor updates the fields during provisioning.
Abstract:
Some embodiments relate to a cellular network which better utilizes packet-switched (PS) voice technologies, such as VoLTE, for roaming user equipment (UE) devices. When a roaming UE associated with a home cellular carrier that does not support PS to CS handover (SRVCC) desires to make a VoLTE call, the cellular network may determine probability of such a handover during the the call. The cellular network may selectively accept or reject the packet-switched wireless voice call based on the handover probability. If the probability of handover is high, the cellular network may reject the packet-switched wireless voice and trigger the UE to fall back to a circuit-switched network and re-originate the wireless voice call on the circuit-switched network. In the case of a mobile terminated call, the cellular network may provide signaling to the UE to perform a fallback to a circuit-switched network in order to receive the mobile terminated call.
Abstract:
A method for negotiating a session personality based at least in part on a roaming agreement is provided. The method can include a roaming access network receiving an identifier provided by an access terminal attendant to establishment of a session between the access terminal and the roaming access network. The method can further include the roaming access network using the identifier to determine a home network associated with the access terminal. The method can additionally include the roaming access network determining one or more radio access technology (RAT) versions covered by a roaming agreement between the home network and the roaming access network. The method can also include the roaming access network negotiating a session personality for use in the session based at least in part on the one or more RAT versions covered by the roaming agreement.
Abstract:
Methods and apparatus for intelligent scheduling in hybrid networks based on client identity. For example, in one embodiment, the hybrid networks are cellular networks (e.g., LTE and CDMA 1X), and a cellular device uses a single-radio solution to support circuit-switched calls on a CDMA 1X network and packet-switched calls on LTE. Periodically, the cellular device tunes away from LTE and monitors CDMA 1X activity, and vice versa. The LTE network can infer the cellular device's tune away schedule, based on the device's identity, and the paging schedule algorithm of the CDMA 1X network.