Abstract:
Memory packages, memory modules, and circuit boards are described. In an embodiment, single channel memory packages are mounted on opposite sides of a circuit board designed with a first side also designed to accept dual channel memory packages. Alternatively, dual channel memory packages may be mounted on a first side of a circuit board that is also designed to accept single channel packages on opposite sides.
Abstract:
Memory packages, memory modules, and circuit boards are described. In an embodiment, single channel memory packages are mounted on opposite sides of a circuit board designed with a first side also designed to accept dual channel memory packages. Alternatively, dual channel memory packages may be mounted on a first side of a circuit board that is also designed to accept single channel packages on opposite sides.
Abstract:
A method and apparatus for recovering from a low power state in a computing system is disclosed. In one embodiment of the method, the computing system enters the low power state from a standard power state after an activity detector indicates a user controlled peripheral device connected to the computer system has been inactive for a period of time. To enter the low power state, the method disconnects the user controlled peripheral device from a host controller, while continuing to supply power to the user controlled peripheral device and shutting off power to the host controller. The method returns the computer system to the standard power state when the activity detector indicates the user controlled peripheral device has become active. To return to the standard power state, power is restored to the host controller and the user controlled peripheral device is reconnected to the host controller.
Abstract:
A method and apparatus for recovering from a low power state in a computing system is disclosed. In one embodiment of the method, the computing system enters the low power state from a standard power state after an activity detector indicates a user controlled peripheral device connected to the computer system has been inactive for a period of time. To enter the low power state, the method disconnects the user controlled peripheral device from a host controller, while continuing to supply power to the user controlled peripheral device and shutting off power to the host controller. The method returns the computer system to the standard power state when the activity detector indicates the user controlled peripheral device has become active. To return to the standard power state, power is restored to the host controller and the user controlled peripheral device is reconnected to the host controller.
Abstract:
Methods and apparatus for dynamically allocating resources to a plurality of controllers are disclosed. In one embodiment, the controllers comprise multiple types of Universal Serial Bus compliant controllers. When a USB-compliant device is detected, one or more determinations are made regarding the detected device such as the supported data transfer speed capabilities. Based on the one or more determinations, the device is directed to an appropriate controller.