Abstract:
A switched-mode power supply with reduced electromagnetic interference (EMI) is described. This switched-mode power supply includes a modulation circuit that continuously frequency modulates a control signal over a bandwidth associated with a spread-spectrum modulation signal. By frequency modulating the control signal in the switched-mode power supply, spectral content associated with a modulated switching signal is spread evenly over the bandwidth, thereby reducing the EMI.
Abstract:
A data processing system can include a first IC including one or more A/D converters that receive analog inputs from one or more sensors and generate corresponding digital data, a second IC including one or more processing elements that operate on the digital data, and communication circuitry, coupled between the one or more A/D converters and processing elements, that includes a packetizer on the first IC that receives samples and sample data from the one or more A/D converters and assembles each sample and corresponding sample data into a packet, a primary physical interface on the first IC that communicates the packet to a secondary physical interface on the second IC, and a de-packetizer that on the second IC that receives the packet, de-packetizes it, and delivers the sample and sample data to the one or more processing elements.
Abstract:
A wireless power transmitting device may transmit power wirelessly to a wireless power receiving device. The wireless power receiving device may be a portable electronic device with an array of wireless power receiving coils that receive wireless power from wireless power transmitting coils in the wireless power transmitting device. Each receiving coil in the array of wireless power receiving coils may be coupled to a respective rectifier. Control circuitry of the wireless power receiving device may be configured to determine which rectifiers to enable for synchronous rectification. The control circuitry may be configured to enable at least one rectifier based on the alternating-current voltages produced by each coil in the array of receiving coils. The control circuitry may also be configured to enable at least one rectifier based on the output current from each rectifier.
Abstract:
A wireless power transmitting device may transmit power wirelessly to a wireless power receiving device. The wireless power receiving device may be a portable electronic device with an array of wireless power receiving coils that receive wireless power from wireless power transmitting coils in the wireless power transmitting device. Each receiving coil in the array of wireless power receiving coils may be coupled to a respective rectifier. Control circuitry of the wireless power receiving device may be configured to determine which rectifiers to enable for synchronous rectification. The control circuitry may be configured to enable at least one rectifier based on the alternating-current voltages produced by each coil in the array of receiving coils. The control circuitry may also be configured to enable at least one rectifier based on the output current from each rectifier.
Abstract:
During operation, the DC converter and a DC battery charger controller in a charger circuit transitions from a first error signal to a second error signal for use in charging a battery, wherein the first error signal and the second error signal, respectively, correspond to feedback sources in a plurality of feedback sources with a plurality of feedback sources. Then, the DC converter and a DC battery charger controller selects a gain and an impedance to ground of a damping circuit based on the selected second error signal, where the damping circuit applies the gain and the impedance to ground to the second error signal. Moreover, the DC converter and a DC battery charger controller selects one or more clamping voltages of a voltage-clamping circuit based on the selected second error signal, where the voltage-clamping circuit applies the one or more clamping voltages to an output from the damping circuit.
Abstract:
The disclosed embodiments provide a synchronous switching converter that converts a DC input voltage into a DC output voltage. This synchronous switching converter includes a high-side switching MOSFET coupled between an input node and a first node. The converter also includes a low-side switching MOSFET coupled between the first node and a ground node and is in series with the high-side switching MOSFET. This converter additionally includes a bootstrap capacitor coupled to the high-side switching MOSFET to provide turn-on voltage for the high-side switching MOSFET. Furthermore, the converter includes a main refresh circuit coupled to the bootstrap capacitor and is configured to refresh the bootstrap capacitor during a first operating mode of the synchronous switching converter. Moreover, the converter includes an auxiliary refresh circuit coupled to the main refresh circuit and the bootstrap capacitor and is configured to refresh the bootstrap capacitor during a second operating mode of the converter.
Abstract:
A system and method are described for charging a battery in a portable electronic device wherein the battery is charged using a constant-current, constant-voltage charging process. In described embodiments, a resistance is received for a current loop that includes a charger and the battery. Then, during a constant-current charging phase, a constant current is output from the charger until an output voltage of the charger reaches a target voltage. The target voltage includes a battery target voltage and a compensation voltage based on the received resistance and a charging current. When the output voltage of the charger reaches the target voltage, the charger switches from the constant-current phase to a constant-voltage phase. Then during the constant-voltage phase, the charger outputs the target voltage until the charging current drops below a minimum value at which time the charging process is complete.
Abstract:
The disclosed embodiments provide a synchronous switching converter that converts a DC input voltage into a DC output voltage. This synchronous switching converter includes a high-side switching MOSFET coupled between an input node and a first node. The converter also includes a low-side switching MOSFET coupled between the first node and a ground node and is in series with the high-side switching MOSFET. This converter additionally includes a bootstrap capacitor coupled to the high-side switching MOSFET to provide turn-on voltage for the high-side switching MOSFET. Furthermore, the converter includes a main refresh circuit coupled to the bootstrap capacitor and is configured to refresh the bootstrap capacitor during a first operating mode of the synchronous switching converter. Moreover, the converter includes an auxiliary refresh circuit coupled to the main refresh circuit and the bootstrap capacitor and is configured to refresh the bootstrap capacitor during a second operating mode of the converter.
Abstract:
A data processing system can include a first IC including one or more A/D converters that receive analog inputs from one or more sensors and generate corresponding digital data, a second IC including one or more processing elements that operate on the digital data, and communication circuitry, coupled between the one or more A/D converters and processing elements, that includes a packetizer on the first IC that receives samples and sample data from the one or more A/D converters and assembles each sample and corresponding sample data into a packet, a primary physical interface on the first IC that communicates the packet to a secondary physical interface on the second IC, and a de-packetizer that on the second IC that receives the packet, de-packetizes it, and delivers the sample and sample data to the one or more processing elements.
Abstract:
This disclosure describes a system and a method to limit (i.e., regulate) the input power of a power converter as a function of the voltage and/or loading condition of a power-limited source such as a battery. In some embodiments, the power converter may comprise a transconductance amplifier that may produce a sink current to a current mirror, which in turn that may provide an adjusted current limit threshold to the power converter. The power converter may utilize the current limit threshold to perform cycle-by-cycle current limiting, thus regulating the input power drawn from the battery.