Abstract:
A substrate holder for a lithographic apparatus has a planarization layer provided on a surface thereof. The planarization layer provides a smooth surface for the formation of a thin film stack forming an electronic component. The planarization layer is of substantially uniform thickness and/or its outer surface has a peak to valley distance of less than 10 μm. The planarization layer may be formed by applying two solutions of different concentration. A surface treatment may be applied to the burls to repel a solution of the planarization layer material.
Abstract:
A coating is disclosed. The coating may be used in an apparatus having a radiation source, e.g. a lithographic apparatus. The coating comprises the elements Si, O, F and, optionally, C and H. An article is also disclosed. The article may be any one of the group consisting of a substrate table, an optical element, a shutter member, a sensor, a projection system, and a confinement structure. At least a portion of a surface of the article is coated with a coating. The coating comprises the elements Si, O, F and, optionally, C and H. The coating may comprise the elements Si, O, C and H.
Abstract:
A substrate holder for a lithographic apparatus has a planarization layer provided on a surface thereof. The planarization layer provides a smooth surface for the formation of an electronic component such as a thin film electronic component. The planarization layer may be provided in multiple sub layers. The planarization layer may smooth over roughness caused by removal of material from a blank to form burls on the substrate holder.
Abstract:
A substrate holder for a lithographic apparatus has a main body having a thin-film stack provided on a surface thereof. The thin-film stack forms an electronic or electric component such as an electrode, a sensor, a heater, a transistor or a logic device, and has a top isolation layer. A plurality of burls to support a substrate are formed on the thin-film stack or in apertures of the thin-film stack.
Abstract:
An object holder for a lithographic apparatus has a main body having a surface. A plurality of burls to support an object is formed on the surface or in apertures of a thin-film stack. At least one of the burls is formed by laser-sintering. At least one of the burls formed by laser-sintering may be a repair of a damaged burl previously formed by laser-sintering or another method.
Abstract:
An object holder for a lithographic apparatus has a main body having a surface. A plurality of burls to support an object is formed on the surface or in apertures of a thin-film stack. At least one of the burls is formed by laser-sintering. At least one of the burls formed by laser-sintering may be a repair of a damaged burl previously formed by laser-sintering or another method.
Abstract:
A substrate holder for a lithographic apparatus has a planarization layer provided on a surface thereof. The planarization layer provides a smooth surface for the formation of an electronic component such as a thin film electronic component. The planarization layer may be provided in multiple sub layers. The planarization layer may smooth over roughness caused by removal of material from a blank to form burls on the substrate holder.
Abstract:
A substrate holder for a lithographic apparatus has a planarization layer provided on a surface thereof. The planarization layer provides a smooth surface for the formation of a thin film stack forming an electronic component. The thin film stack comprises an (optional) isolation layer, a metal layer forming an electrode, a sensor, a heater, a transistor or a logic device, and a top isolation layer.