Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for combining frame and segment level processing, via temporal pooling, for phonetic classification. A frame processor unit receives an input and extracts the time-dependent features from the input. A plurality of pooling interface units generates a plurality of feature vectors based on pooling the time-dependent features and selecting a plurality of time-dependent features according to a plurality of selection strategies. Next, a plurality of segmental classification units generates scores for the feature vectors. Each segmental classification unit (SCU) can be dedicated to a specific pooling interface unit (PIU) to form a PIU-SCU combination. Multiple PIU-SCU combinations can be further combined to form an ensemble of combinations, and the ensemble can be diversified by varying the pooling operations used by the PIU-SCU combinations. Based on the scores, the plurality of segmental classification units selects a class label and returns a result.
Abstract:
Disclosed herein are systems, methods, and computer-readable storage media for detecting voice activity in a media signal in an augmented, multi-tier classifier architecture. A system configured to practice the method can receive, from a first classifier, a first voice activity indicator detected in a first modality for a human subject. Then, the system can receive, from a second classifier, a second voice activity indicator detected in a second modality for the human subject, wherein the first voice activity indicator and the second voice activity indicators are based on the human subject at a same time, and wherein the first modality and the second modality are different. The system can concatenate, via a third classifier, the first voice activity indicator and the second voice activity indicator with original features of the human subject, to yield a classifier output, and determine voice activity based on the classifier output.
Abstract:
Concepts and technologies are disclosed herein for providing navigation routes and/or providing navigation route updates. According to various embodiments of the concepts and technologies disclosed herein, a navigation application can be configured to obtain route data from a routing service. The routing service can be configured to use navigation data locally stored and/or obtained from a number of sources to generate navigation routes and/or to update navigation routes. The generated and/or updated navigation routes can be provided to the user device as route data that can be used to provide navigation directions to a user.
Abstract:
Methods, apparatuses and media for providing content upon request are provided. A search request for content is received from a user. A first filter is applied to the search request to modify the search request before a search algorithm searches for the content to return in response to the search request. Items of content are determined based on the search request to which the first filter is applied. A second filter is applied to the items of content to determine search results. The search results are provided to the user.
Abstract:
Methods, apparatuses and media for providing content upon request are provided. A search request for content is received from a user. A first filter is applied to the search request to modify the search request before a search algorithm searches for the content to return in response to the search request. Items of content are determined based on the search request to which the first filter is applied. A second filter is applied to the items of content to determine search results. The search results are provided to the user.
Abstract:
A system for exploiting visual information for enhancing audio signals via source separation and beamforming is disclosed. The system may obtain visual content associated with an environment of a user, and may extract, from the visual content, metadata associated with the environment. The system may determine a location of the user based on the extracted metadata. Additionally, the system may load, based on the location, an audio profile corresponding to the location of the user. The system may also load a user profile of the user that includes audio data associated with the user. Furthermore, the system may cancel, based on the audio profile and user profile, noise from the environment of the user. Moreover, the system may include adjusting, based on the audio profile and user profile, an audio signal generated by the user so as to enhance the audio signal during a communications session of the user.
Abstract:
A system for exploiting visual information for enhancing audio signals via source separation and beamforming is disclosed. The system may obtain visual content associated with an environment of a user, and may extract, from the visual content, metadata associated with the environment. The system may determine a location of the user based on the extracted metadata. Additionally, the system may load, based on the location, an audio profile corresponding to the location of the user. The system may also load a user profile of the user that includes audio data associated with the user. Furthermore, the system may cancel, based on the audio profile and user profile, noise from the environment of the user. Moreover, the system may include adjusting, based on the audio profile and user profile, an audio signal generated by the user so as to enhance the audio signal during a communications session of the user.
Abstract:
A pre-distortion system for improved mobile device communications via cancellation of nonlinear distortion is disclosed. The pre-distortion system may transmit an acoustic signal from a network to a device, wherein the acoustic signal includes a linear signal and a nonlinear cancellation signal that cancels at least a portion of nonlinear distortions created once a loudspeaker in the device emits the linear signal. Thus, when a loudspeaker of a mobile device is operating and nonlinear distortions are generated by the loudspeaker or adjacent components of the mobile device in close proximity to the loudspeaker, the pre-distortion system may create one or more nonlinear cancellation signals in the network. The nonlinear cancellation signal may be combined with the linear signal sent to the loudspeaker to cancel the nonlinear distortion signal created by the loudspeaker emitting acoustic sounds from the linear signal. Thus, the nonlinear cancellation signal becomes a pre-distortion signal.
Abstract:
A system for exploiting visual information for enhancing audio signals via source separation and beamforming is disclosed. The system may obtain visual content associated with an environment of a user, and may extract, from the visual content, metadata associated with the environment. The system may determine a location of the user based on the extracted metadata. Additionally, the system may load, based on the location, an audio profile corresponding to the location of the user. The system may also load a user profile of the user that includes audio data associated with the user. Furthermore, the system may cancel, based on the audio profile and user profile, noise from the environment of the user. Moreover, the system may include adjusting, based on the audio profile and user profile, an audio signal generated by the user so as to enhance the audio signal during a communications session of the user.
Abstract:
A pre-distortion system for improved mobile device communications via cancellation of nonlinear distortion is disclosed. The pre-distortion system may transmit an acoustic signal from a network to a device, wherein the acoustic signal includes a linear signal and a nonlinear cancellation signal that cancels at least a portion of nonlinear distortions created once a loudspeaker in the device emits the linear signal. Thus, when a loudspeaker of a mobile device is operating and nonlinear distortions are generated by the loudspeaker or adjacent components of the mobile device in close proximity to the loudspeaker, the pre-distortion system may create one or more nonlinear cancellation signals in the network. The nonlinear cancellation signal may be combined with the linear signal sent to the loudspeaker to cancel the nonlinear distortion signal created by the loudspeaker emitting acoustic sounds from the linear signal. Thus, the nonlinear cancellation signal becomes a pre-distortion signal.