摘要:
There is provided an actuator that can deform as an electrolyte moves, wherein at least one of a pair of electrode layers contains polymer fibers, and the polymer fibers contain an electroconductive material and are porous.
摘要:
The present invention relates to an actuator including a supporting portion including a first electrode, a second electrode disposed opposite the first electrode, and a part of a planar electrolyte member disposed therebetween, and having terminals configured to apply a voltage between the first and second electrodes; a displacement portion; and an intermediate portion disposed between the supporting portion and the displacement portion and including a third electrode on the electrolyte member and a conductive connecting member. The third electrode includes linear members and a conductive material. The linear members have major axes thereof extending in a direction crossing a direction from the supporting portion toward the displacement portion. The third electrode has conduction paths through which a current flows in the crossing direction. The conductive connecting member is electrically connected to one of the first and second electrodes and electrically connects the conduction paths together.
摘要:
An actuator with a sensor, including an actuator having electrodes and an ionic conduction layer, a sensor and a rigid body member provided in contact with the sensor. The actuator is connected to the sensor through the rigid body member such that the sensor is not deformed attending on deformation of the actuator.
摘要:
The invention provides a block polymer capable of being used as a molecular wire facilitating injection of carriers between itself and an electrode, and a device in which electrodes are bridged by one molecule. The block polymer has a main chain composed of polyacetylene having a spiral structure, and includes a coating insulating block and a conductive block. The coating insulating block has a polyacetylene unit structure having alkyl chains at its side chains through functional groups, the alkyl chains being arranged in a direction parallel to the major axis of the main chain. The conductive block has a polyacetylene unit structure having hydrogen atoms at its side chains through functional groups, the hydrogen atoms being arranged in a direction parallel to the major axis of the main chain. The device has the above-mentioned block polymer, and two or more electrodes.
摘要:
The invention provides a block polymer capable of being used as a molecular wire facilitating injection of carriers between itself and an electrode, and a device in which electrodes are bridged by one molecule. The block polymer has a main chain composed of polyacetylene having a spiral structure, and includes a coating insulating block and a conductive block. The coating insulating block has a polyacetylene unit structure having alkyl chains at its side chains through functional groups, the alkyl chains being arranged in a direction parallel to the major axis of the main chain. The conductive block has a polyacetylene unit structure having hydrogen atoms at its side chains through functional groups, the hydrogen atoms being arranged in a direction parallel to the major axis of the main chain. The device has the above-mentioned block polymer, and two or more electrodes.
摘要:
The present invention provides a system which includes: a display media discard device which has a discard unit for discarding a display medium with an RF-ID tag and an RF-ID read unit for reading identification information of the RF-ID tag by radio communication; and a data administration device which stores contents information and administration information related to the contents information in association with the identification information of the RF-ID tag. In the system, when the display medium is discarded in the display media discard device, the contents information stored in the data administration device is deleted or the administration information is rewritten.
摘要:
An electron-emitting device comprises a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 μm, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.
摘要:
An electron-emitting device has a pair of device electrodes formed on a substrate, an electroconductive film connecting the device electrodes and an electron-emitting region formed in the electroconductive film. The electron-emitting device is manufactured by (1) applying an ink containing the material for producing the electroconductive film to a predetermined position of the substrate in the form of one or more than one drops by means an ink-jet apparatus, (2) drying and/or baking the applied drop(s) to turn the drop(s) into an electroconductive thin film and (3) applying a voltage to the pair of device electrodes to flow an electric current through the electroconductive film and produce an electron-emitting region. Steps (1) and (2) are so conducted that the electroconductive film formed by steps (1) and (2) have a latent image apt to produce an electron-emitting region by the Joule's heat generated by step (3).
摘要:
In a manufacture method of an electron-emitting device in which an electro-conductive film having an electron-emitting region is provided between electrodes disposed on a substrate, a step of forming the electron-emitting region comprises a step of forming a structural latent image in the electro-conductive film, and a step of developing the structural latent image. An electron source comprising a plurality of electron-emitting devices arrayed on a substrate, and an image-forming apparatus in combination of the electron source and an image-forming member are manufactured by using the electron-emitting devices manufactured by the above method. The position and shape of an electron-emitting region of each electron-emitting device can be controlled so as to achieve uniform device characteristics, resulting less variations in the amount of emitted electrons between the electron-emitting devices and in the brightness of pictures. Also, the need of flowing a great current for formation of the electron-emitting region is eliminated and hence the current capacity of wiring can be reduced.
摘要:
An electron-emitting device has a pair of device electrodes and an electroconductive thin film including an electron emitting region arranged between the electrodes. The device is manufactured via an activation process for increasing the emission current of the device. The activation process includes steps of a) applying a voltage (Vact) to the electroconductive thin film having a gap section under initial conditions, b) detecting the electric performance of the electroconductive thin film and c) modifying, if necessary, the initial conditions as a function of the detected electric performance of the electroconductive thin film.