摘要:
The present invention provides for a method and an apparatus for implementing a control simulation environment into a manufacturing environment. A process task is defined. A process simulation function is performed to produce simulation data corresponding to the process task. The simulation data is integrated with a process control environment for controlling a manufacturing process of a semiconductor device.
摘要:
A novel method and system for fabricating integrated circuit devices is disclosed herein. In one embodiment, the method comprises determining at least one electrical performance characteristic of a plurality of semiconductor devices formed above at least one semiconducting substrate, providing the determined electrical performance characteristics to a controller that determines, based upon the determined electrical characteristics, across-substrate variations in an exposure dose of a stepper exposure process to be performed on at least one subsequently processed substrate, and performing the stepper exposure process comprised of the across-substrate variations in exposure dose on the subsequently processed substrates. The system comprises a metrology tool for determining an electrical performance characteristic of a plurality of semiconductor devices formed above at least one substrate, a controller that determines, based upon the determined electrical performance characteristics, across-substrate variations in an exposure dose of a stepper exposure process to be performed on subsequently processed substrates, and a stepper tool that performs the stepper exposure process comprised of the across-substrate variations in exposure dose on the subsequently processed substrates.
摘要:
The present invention is directed to a method of polishing wafers on a polishing tool comprised of first, second and third platens. The method comprises providing a wafer having a patterned layer of insulating material, a barrier metal layer, and a metal layer formed above the wafer, performing a first polishing operation on the wafer at the first platen to remove a majority of the metal layer above the barrier metal layer, and performing an endpoint polishing operation on the wafer at the second platen to remove at least some of the metal layer. The method further comprises performing a timed overpolish operation on the wafer at the second platen after the endpoint polishing operation is completed at the second platen, performing a timed polishing operation on the wafer at the third platen to remove at least some of the barrier metal layer, determining an erosion rate of the patterned layer of insulating material, providing the determined erosion rate to a controller that determines a duration of the timed overpolish operations to be performed on at least one subsequently processed wafer at the second platen, and performing the timed overpolish operation on the at least one subsequently processed wafer at the second platen for the duration determined by the controller.
摘要:
A novel method and system for fabricating integrated circuit devices is disclosed herein. In one embodiment, the method comprises determining at least one electrical performance characteristic of a plurality of semiconductor devices formed above at least one semiconducting substrate, providing the determined electrical performance characteristics to a controller that determines, based upon the determined electrical characteristics, across-substrate variations in an exposure dose of a stepper exposure process to be performed on at least one subsequently processed substrate, and performing the stepper exposure process comprised of the across-substrate variations in exposure dose on the subsequently processed substrates. The system comprises a metrology tool for determining an electrical performance characteristic of a plurality of semiconductor devices formed above at least one substrate, a controller that determines, based upon the determined electrical performance characteristics, across-substrate variations in an exposure dose of a stepper exposure process to be performed on subsequently processed substrates, and a stepper tool that performs the stepper exposure process comprised of the across-substrate variations in exposure dose on the subsequently processed substrates.
摘要:
The present invention is directed to a method of controlling chemical mechanical polishing operations to control the duration of an endpoint polishing process. The method comprises providing a wafer having a layer of copper formed thereabove, performing a first timed polishing operation for a duration (t1) on the layer of copper at a first platen to remove a majority of the layer of copper, performing an endpoint polishing operation on the layer of copper at a second platen to remove substantially all of the layer of copper, determining a duration (t2ept) of the endpoint polishing operation performed on the layer of copper at the second platen, and determining, based upon a comparison between the determined duration (t2ept) of the endpoint polishing operation and a target value for the duration of the endpoint polishing operations, a duration (t1) of the timed polishing operation to be performed on a subsequently processed layer of copper at the first platen. In another embodiment, the invention further comprises modifying, based upon a variance between the determined duration (t2ept) of the endpoint polishing operation and a target value for the duration (t2ept) of the endpoint polishing operation, the duration (t1) of the timed polishing operation to be performed on a subsequently processed layer of copper at the first platen.
摘要:
The present invention provides for a method and an apparatus for performing dynamic sampling of a production line. A first plurality of semiconductor wafers are processed. A minimum sampling rate of semiconductor wafers is calculated. Wafers from the first plurality of the semiconductor wafers are selected and analyzed at the calculated sampling rate. The performance of the processing of the first plurality of semiconductor wafers is quantified, based upon the analyzed wafers. A dynamic sampling process is performed based upon the quantification of the performance of the processing of semiconductor wafers.
摘要:
A method for processing an interrupted workpiece includes providing a dynamic control model defining the processing characteristics of a processing tool throughout a processing run; providing a partially processed workpiece; determining an extent of processing metric for the partially processed workpiece; and determining at least one operating recipe parameter of the processing tool based on the dynamic control model and the extent of processing metric. A manufacturing system includes a processing tool and a process controller. The processing tool is adapted to process a partially processed workpiece in accordance with an operating recipe. The process controller is adapted to determine an extent of processing metric for the partially processed workpiece and determine at least one parameter of the operating recipe based on a dynamic control model defining the processing characteristics of the processing tool throughout a processing run and the extent of processing metric.
摘要:
A method for polishing wafers includes providing a wafer having a process layer formed thereon; providing a polishing tool having a plurality of control zones and being adapted to polish the process layer based on an operating recipe, the operating recipe having a control variable corresponding to each of the control zones; measuring a pre-polish thickness profile of the process layer; comparing the pre-polish thickness profile to a target thickness profile to determine a desired removal profile; determining values for the control variables associated with the control zones based on the desired removal profile; and modifying the operating recipe of the polishing tool based on the values determined for the control variables. A processing line includes a polishing tool, a metrology tool, and a process controller. The polishing tool is adapted to polish a wafer having a process layer formed thereon based on an operating recipe. The polishing tool includes a plurality of control zones and the operating recipe includes a control variable corresponding to each of the control zones. The metrology tool is adapted to measure a pre-polish thickness profile of the process layer. The process controller is adapted to compare the pre-polish thickness profile to a target thickness profile to determine a desired removal profile, determine values for the control variables associated with the control zones based on the desired removal profile, and modify the operating recipe of the polishing tool based on the values determined for the control variables.
摘要:
A processing line includes a deposition tool, a metrology tool, an etch tool, and a process controller. The deposition tool is adapted to form a process layer on a plurality of wafers. The metrology tool is adapted to measure the thickness of the process layer for a sample of the wafers. The etch tool is adapted to etch the process layer in accordance with an operating recipe. The process controller is adapted to store a thickness profile model of the deposition tool, generate predicted process layer thicknesses for the wafers not measured by the metrology tool based on the process layer thickness measurements of the wafers in the sample and the thickness profile model, and modify the operating recipe of the etch tool based on the predicted process layer thicknesses. A method for controlling wafer uniformity includes storing a thickness profile model of a deposition tool; depositing a process layer on a plurality of wafers in the deposition tool; measuring the thickness of the process layer for a sample of the wafers; generating predicted process layer thicknesses for the wafers not measured based on the process layer thickness measurements and the thickness profile model; and etching the process layer in an etching tool in accordance with an operating recipe, the operating recipe being based on the predicted process layer thicknesses.
摘要:
The present invention provides for a method and apparatus for correction of overlay control errors. Semiconductor devices are processed based upon control input parameters. The processed semiconductor devices are examined in a review station. The control input parameters are modified in response to the examination of the processed semiconductor devices. New control input parameters are implemented for a subsequent run of the semiconductor device processing step based upon the modification of the control input parameters.